1

Capitolo W70

prontuario: fisica matematica

Contenuti delle sezioni

- a. grandezze fisiche: nomi e simboli p. 2
- b. unità di misura p. $3\,$
- c. costanti fisiche p. $5\,$
- d. grandezze fisiche non ${\sf S.I.}$ p. 6

6 pagine

Alberto Marini

W70 a. grandezze fisiche: nomi e simboli

W70a.01 I generi delle 7 grandezze asssunte come fondamentali dal sistema S.I. accompagnati dai loro cosiddetti simboli dimensionali sono i seguenti.

Intervallo di tempo ['	T
Lunghezza [L]
Massa [M
Intensità di corrente [I]
Temperatura [Θ
Intensità luminosa [J]
Quantità di sostanza [N]

Le costanti fondamentali del sistema S.I. sono le seguenti

Frequenza di transizione iperfina del Cesio 133	Δ_{Cs}
Velocità della luce nel vuoto	С
Costante di Planck	h
Carica elementare	е
Costante di Boltzmann	k
Efficienza luminosa standard	Kcd
Numero di Avogadro	N_A

L'efficienza luminosa riguarda la radiazione monocromatica alla frequenza di $540\cdot 10^{12}$ Hz.

MATeXp-prontuario

W70 b. unità di misura

W70b.02 Nella tabella che segue adottiamo le seguenti abbreviazioni.

- $(a) = {
 m Simboli\ del\ genere\ della\ grandezza}$
- $(\mathbf{b}) = \text{Nome dell'unità S.I.}$
- (c) = Simbolo dell'unità S.I.
- $(\boldsymbol{\mathsf{d}}) = \operatorname{Equivalenza}$ in termini di unità di base

(u) = Equivalenza in termini (ai aiiia ai basc			
Grandezza fisica	(a)	(b)	(c)	(d)
frequenza	f, ν	hertz	$_{ m Hz}$	s^{-1}
forza	\mathbf{F}	newton	N	$\mathrm{kg}\cdot\mathrm{m}\cdot\mathrm{s}^{-2}$
pressione	p	pascal	Pa	$N \cdot m^{-2}$; kg · m ⁻¹ · s ⁻²
energia, lavoro,	E, W/L, Q, H	joule	J	$N \cdot m = kg \cdot m^2 \cdot s^{-2}$
calore, entalpia				
potenza	P	watt	W	$J\cdot s^{-1} = kg \cdot m^2 \cdot s^{-3}$
viscosità dinamica	μ,η	poiseuille	Pl	$Pa \cdot s = m^{-1} \cdot kg \cdot s^{-1}$
carica elettrica	q	coulomb	\mathbf{C}	$A \cdot s$
potenziale elettrico,	V, fem	volt	V	$J \cdot C^{-1} = m^2 \cdot kg \cdot s^{-3}$
$\cdot A^{-1}$				
tensione elettrica				
forza elettromotrice,				
resistenza elettrica	R	ohm	Ω	$V \cdot A^{-1} = m^2 \cdot kg \cdot s^{-3} \cdot A^{-2}$
conduttanza elettrica	G	siemens	\mathbf{S}	$A \cdot V^{-1} = s^3 \cdot A^2 \cdot m^{-2} \cdot kg^{-1}$
capacità elettrica	\mathbf{C}	farad	F	$C \cdot V^{-1}; s^4 \cdot A^2 \cdot m^{-2} \cdot kg^{-1}$
densità di flusso magnetico	В	tesla	${ m T}$	$V \cdot s \cdot m^{-2}$; $kg \cdot s^{-2} \cdot A^{-1}$
flusso magnetico	$\Phi(B)$	weber	Wb	$V \cdot s; m^2 \cdot kg \cdot s^{-2} \cdot A^{-1}$
induttanza	L	henry	H	$V \cdot s \cdot A^{-1}$; $m^2 \cdot kg \cdot s^{-2} \cdot A^{-2}$
temperatura	${ m T}$	grado Celsius	$^{\circ}\mathrm{C}$	K
angolo piano	$\alpha, \phi, e \times e$	radiante	rad	$1; m \cdot m^{-1}$
angolo solido	Ω	steradiante	sr	$1 ; m^2 \cdot m^{-2}$
flusso luminoso	$\Phi(I)$	lumen	lm	$\operatorname{cd} \cdot \operatorname{sr}$
illuminamento	El	lux	lx	${\rm cd \cdot sr \cdot m^{-2}}$
potere diottrico	Do	diottria	D	m^{-1}
attività di un radionuclide	AR	becquerel	Bq	s^{-1}
dose assorbita	D	gray	Gy	$J \cdot kg^{-1}; m^2 \cdot s^{-2}$
dose equivalente,	H, EH	sievert	Sv	$J \cdot kg^{-1}; m^2 \cdot s^{-2}$
dose efficace				
attività catalitica		katal	kat	$\mathrm{mol}\cdot\mathrm{s}^{-1}$
area	A	metro quadro	m^2	
volume	V	metro cubo	m^3	
velocità	V	metro al secondo	m/s	$\mathrm{m}\cdot\mathrm{s}^{-1}$
accelerazione	a	$\mathrm{m/s^2}$	$\mathrm{m}\cdot\mathrm{s}^{-2}$	
velocità angolare	ω	$\mathrm{rad}\cdot\mathrm{s}^{-1}$	s^{-1}	
accelerazione angolare	α , ω	$\mathrm{rad}\cdot\mathrm{s}^{-2}$	s^{-2}	
densità	ρ , d	kg al metro cubo	${\rm kgm^{-3}}$	$kg \cdot m-3$

Alberto Marini

molarità SI M mol \cdot dm-3 volume molare Vm mol \cdot mol \cdot mol \cdot mol $^{-1}$

W70 c. costanti fisiche

W70c.01

Grandezza	Simbolo	Valore	
velocità della luce nel vuoto	c	$299\ 792\ 458\ \mathrm{m\ s^{-1}}$	
costante dielettrica del vuoto	ϵ_0	$8,854\ 187\ 817\ 10^{-12}\ \mathrm{F\ m^{-1}}$	
permeabilità del vuoto	μ_0	$4\pi \ 10^{-7} \ { m T \ m \ A^{-1}}$	
costante di gravitazione universale	G	$6,67259(85)\ 10^{-11}\ N\ \mathrm{m^2\ kg^{-2}}$	
costante di Planck	h	$6,62607015 \ 10^{-34} \ \mathrm{J \ s}$	effetto fotoelettrico
carica dell'elettrone	e	$1,602176634\ 10^{-19}\ \mathrm{C}$	
massa a riposo dell'elettrone	m_e	$9,109\ 381\ 88(72)\ 10^{-31}\ \mathrm{kg}$	
massa a riposo del protone	m_p	$1,672\ 621\ 58(13)\ 10^{-27}\ \mathrm{kg}$	
massa a riposo del neutrone	m_n	$1,674\ 927\ 16(13)\ 10^{-27}\ \mathrm{kg}$	
unità di massa atomica	$1 \mathrm{\ amu}$	$1,660\;538\;73(13)\;10^{-27}\;\mathrm{kg}$	
numero di Avogadro	$L = N_A$	$6,022\ 140\ 76\ 1023\ \mathrm{mol^{-1}}$	
costante di Boltzmann	k	$1,380 \ 649 \ 10^{-23} \ \mathrm{J \ K^{-1}}$	
costante di Faraday	F	$9,648\ 534\ 15(39)\ 104\ {\rm C\ mol^{-1}}$	
costante dei gas	R	$8,314\ 472(15)\ \mathrm{J\ K^{-1}\ mol^{-1}}$	
costante di struttura fine	α	$7,297\ 352\ 533(27)\ 10^{-3}$	
raggio di Bohr	a_0	$5,291\ 772\ 083(19)\ 10^{-11}\ \mathrm{m}$	
costante di Rydberg	R_{∞}	$1,097\ 373\ 156\ 8549(83)\ 107\ \mathrm{m}^{-1}$	
magnetone di Bohr	μ_B	$9,274\ 008\ 99(37)\ 10^{-24}\ \mathrm{J}\ \mathrm{T}^{-1}$	
volume molare gas ideale a 1 bar e 0 °C		$22,710981(40) \text{ L mol}^{-1}$	
energia di Hartree	E_h	$4,35974381(34)\ 10^{-18}\ \mathrm{J}$	
momento magnetico dell'elettrone	μ_e	$-9,284\ 763\ 62(37)\ 10^{-24}\ \mathrm{J}\ \mathrm{T}^{-1}$	
momento magnetico del protone	μ_p	$1,410\ 607\ 61(47)\ 10^{-26}\ \mathrm{J}\ \mathrm{T}^{-1}$	
magnetone nucleare	μ_N	$5,0507866(17)\ 10^{-27}\ \mathrm{J}\ \mathrm{T}^{-1}$	
rapporto giromagnetico del protone	γ_p	$2,675\ 221\ 28(81)\ 108\ s^{-1}\ T^{-1}$	
costante di Stefan-Boltzmann	σ	$5,670\ 400(40)\ 10^{-8}\ \mathrm{W\ m^{-2}\ K^{-4}}$	
prima costante di radiazione	c_1	$3,741\ 774\ 9(22)\ 10^{-16}\ \mathrm{W\ m^2}$	
seconda costante di radiazione	c_2	$1,438\ 769(12)\ 10^{-2}\ \mathrm{m\ K}$	
costante di Wien (energia)	$b_{energia}$	$2,897\ 7685(51)\ 10^{-3}\ \mathrm{m\ K}$	
costante di Wien-Bonal (entropia)	$b_{entropia}$	$3,002 \ 9152(05) \ 10^{-3} \ \mathrm{m \ K}$	

Alberto Marini

W70 d. grandezze fisiche non S.I.

W70d.01 Sono utilizzate numerose grandezze estranee a S.I. per mantenere la coerenza con le tradizioni delle diverse aree del mondo e le esigenze degli specifici settori tecnologici.

Nome	Simbolo	o Equiv	Equivalenza in termini di unità di base		
minuto	min	1 min	s = 60 s		
	h		1 hm = 60 s 1 h = 60 min = 3600 s		
ora					
giorno	d	_	1 giorno = 24 h = 1440 min = 86400 s		
litro	l, L	1 L =	$1 L = 1 dm^3 = 1 \times 10^{-3} m^3$		
grado d'arco	0	1° =	$(1/60)^{\circ} = (p/10800)$ rad		
minuto secondo	00	100 =	= (1/60)' = (p/648000) rad		
ettaro	ha	1 ha =	$= 1 \text{ hm}^2 = 1 \times 104 \text{ m}^2$		
tonnellata	t	1 t =	$1 \text{ Mg} = 1 \times 10^3 \text{ kg} = 1 \times 10^6 \text{ g}$		
Nome	Š	Simbolo	Conguaglio con le unità fondamentali S.I.		
angstrom	_	\mathring{A}	$1 \text{ Å} = 0.1 \text{ nm} = 1 \times 10 - 10 \text{ m}$		
miglio nautico	1	nm	1 miglio nautico = 1852 m		
nodo	1	kn	1 nodo = 1 miglio nautico all'ora = (1852/3600) m/s		
barn	1	b	$1 \text{ b} = 100 \text{ fm}2 = 10\text{-}28 \text{ m}^2$		
bar	1	bar	$1~{\rm bar} = 0.1~{\rm MPa} = 100~{\rm kPa} = 1~000~{\rm hPa} = 105~{\rm Pa}$		
millimetro di merc	urio 1	mmHg	1 mmHg ? 133,322 Pa		
neper]	Np	Np = e qualsiasi unità fondamentale del $S.I.$		
bel]	В	$1~\mathrm{B} = (\ln 10)/2~\mathrm{Np} = 10$ qualsiasi unità fondamentale del ${\sf S.I.}$		

L'esposizione in https://www.mi.imati.cnr.it/alberto/ e https://arm.mi.imati.cnr.it/Matexp/matexp_main.php