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OUTLINE OF THE COURSE

• Introduction to Bayesian Statistics

• Introduction to Adversarial Risk Analysis

• Discrete Simultaneous Games and Modelling Opponents

• Example: Auctions

• Sequential Games

• Example: Somali Pirates

• My works

– Adversarial Hypothesis Testing

– Batch Acceptance

– Classification

– Software Release
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AUCTIONS
• We now consider continuous asymmetric, first-price, independent-value, sealed-bid

auctions with risk-neutral bidders

– Continuity means that the bids may take any value in an interval, in contrast with
the discrete games treated so far

– Symmetric auctions assume that the values opponents have for the item on offer
are randomly drawn from the same (known) distribution, whereas asymmetric
auctions allow different opponents to draw from different (known) distributions

– In first-price auctions, the highest bidder wins, and pays the amount of that bid

– The independent-value condition implies that the private value that one bidder
has for an object is not influenced by the private value that other bidders have
for that object

– The sealed-bid condition ensures that whatever initial information a bidder has
about the value distributions of his opponents does not change as the auction
proceeds (in contrast with, say, an English auction, where opponents place
increasingly higher bids until all but one has dropped out)

– Risk neutrality implies that each bidder attempts to maximise his expected
monetary profit
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AUCTIONS

• Auctions of this kind are common, and are especially popular when the commercial
value of the item on offer is difficult to determine

• In many sectors (e.g. public one in Italy) companies make sealed bids on federal
contracts, and the lowest qualified bidder prevails. This problem is formally
equivalent to the one we are considering here with the highest bid

• We consider an example in which a lady named Bonnie (B) is bidding against a
man named Clyde (C) for a first edition of The Theory of Games and Economic
Behaviour (the book by von Neumann and Morgenstern, 1944, is the first one about
Game Theory and I saw a copy of the first edition sold over Internet at 15,000 USD)

• Also, this auction does not have a reservation price, i.e. a secret lower bound set by
the owner, so that the book will not be sold if no bid exceeds the reservation price
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AUCTIONS

• Auctions easily illustrate aleatory, epistemic, and concept uncertainties

– Aleatory uncertainty arises whenB does not have full knowledge of the condition
of the book (e.g. damaged or annotated by John Nash)

– Epistemic uncertainty about the private value of the opposing bidder C can be
due to, e.g., his better knowledge of the condition of the book or a sentimental
value

– Concept uncertainty occurs when B does not know which kind of strategic
analysis C will perform when calculating his bid
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AUCTIONS
• Suppose B believes that C is non-strategic, i.e. his rule to select his bid does not

depend upon his analysis of B’s situation

• If B has a distribution F over C ’s bid and x0 is her true value for the book, then,
under the assumption that her utility function for money is linear, she will maximise
her expected utility in a first-price auction by bidding

x∗ = argmaxx∈R+(x0 − x)F (x)

• The right-hand side is B’s expected utility since (x0 − x) is her utility (profit) and
F (x) the probability that a bid x wins the auction (Y is C ’s bid)
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68 3 Auctions

Auctions easily illustrate aleatory, epistemic, and concept uncertainty. Aleatory
uncertainty arises when Bonnie does not have full knowledge of the condition of
the book—it could be damaged, which would lower its value, or it might contain
marginalia by Lloyd Shapley, which would increase its value. Epistemic uncertainty
about the private value of an opposing bidder (i.e., Clyde) can appear in several
ways. Perhaps Clyde has better knowledge of the condition of the book; or perhaps
the book had been owned by Clyde’s thesis advisor, and thus has sentimental value
to him. Finally, concept uncertainty occurs when Bonnie does not know what kind
of strategic analysis Clyde will perform when calculating his bid.

The following sections consider bidding strategies from several different perspec-
tives, using both classical and ARA techniques. The intent is to highlight the as-
sumptions that are needed and the kinds of solutions that result. When possible,
for simplicity, the analysis treats two-person auctions, but the last section discusses
three-person auctions, which is sufficient to understand the n-person case.

3.1 Non-Strategic Play

Suppose Bonnie believes that Clyde is non-strategic. In that case, the rule Clyde uses
to select his bid for the first edition does not depend upon his analysis of Bonnie’s
situation. For example, Clyde’s rule might be to bid 90% of his true value.

If Bonnie has a distribution F over Clyde’s bid, then, under the assumption that
her utility function for money is linear, she will maximize her expected utility in a
first-price auction by bidding

x∗ = argmaxx∈IR+ (x0− x)F(x), (3.1)

where x0 is Bonnie’s true value for the book. To see this, note that her utility (or
profit) from a successful bid of x is (x0− x), and her personal probability that a bid
of x wins the two-person auction is F(x). Thus the right-hand side of (3.1) is just her
expected utility when she bids x (cf. Raiffa, Richardson and Metcalfe, 2002). Figure
3.1 illustrates this situation.

Fig. 3.1 A decision tree in which the possible bids are continuous. The distribution of Clyde’s bid
is F , so the probability that Bonnie wins with a bid of x is F(x).
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AUCTIONS

• Elicitation of F (x) is based on B’s knowledge, as discussed earlier

• An interesting approach is based on dividing the elicitation in two parts:

– G1: distribution over the value of the book to C

– G2: distribution on the fraction of his (i.e. for him!) true value that he bids

• G1 could be based on past sales or appraisal values by experts, possibly adjusted if
B thinks the book has a greater/lesser value for C

• G2 could be based on knowledge of C ’s behaviour in past successful bids or past
statements, or studies on underbidding
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AUCTIONS
• V r.v. (random variable) with distributionG1 (and density g1) on (0,∞) denoting B’s

epistemic uncertainty about C ’s true value

• P r.v. with distribution G2 (and density g2) on [0,1] denoting the fraction of the true
value bid by C

• Y = PV r.v. with distribution F denoting the amount of C ’s bid

• We now assume that the true value and the proportional reduction are independent;
if not, it is still possible to consider an integral, but more complex

F (y) = P[PV ≤ y] =

∫ y

0

∫ 1

0
g1(v)g2(p)dpdv+

∫ ∞

y

∫ y/v

0
g1(v)g2(p)dpdv

= G1(y) +

∫ ∞

y

g1(v)G2(y/v)dv

• The first term corresponds to a true value not exceeding y and the second to a true
value exceeding y but still with a bid not larger than y
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AUCTIONS

• Suppose B’s personal value for the book on auction is x0 = $150

• B models C ’s value for the book as a uniform r.v. on (0,200) (in $) with
G1(v) = v/200, v ∈ [0,200]

• B models the fraction of C ’s value actually bid as a r.v. on [0,1] with G2(p) = p9

• F (y) = G1(y) +

∫ ∞

y

g1(v)G2(y/v)dv =
9

8

y

200
−

1

8

y9

2009
, for $0 ≤ y ≤ $200

• x∗ = argmaxx∈R+(x0 − x)F (x)

⇒ 0 = d
dx
[(x0 − x)F (x)] = 675− 9x− 675

2008x
8 + 5

2008x
9

• Numerical solution shows her bid should be about half of x0, i.e. x∗ = $75
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AUCTIONS

• Up to now there is neither concept uncertainty (since C is non-strategic, with bid
supposed to be proportional to his true value) nor aleatory uncertainty (since B
knows her value x0)

• Suppose that x0 is unknown and B’s true value is modelled by a r.v. X0 with
distribution H and expected value µ

• ⇒ Look for x∗ = argmaxx∈R+ EH[(X0 − x)F (x)] = (µ− x)F (x)

(Remember that we are assuming F (x) known!)

• Therefore, B should just elicit µ and not H: this is a consequence of the risk
neutrality assumption, which implies that her utility for money is linear

• Note that sometimes aleatory uncertainty is more important than epistemic and
concept ones, like for a company bidding for the construction of an oil plant, which
does not know all the costs and difficulties that will arise, and thus does not know
exactly what profit would be realised from its bid
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AUCTIONS

• The maximin perspective here is not very helpful

• u(x, y) = (x0 − x)I(y,∞)(x)

– B’s utility function when she bids x and C bids y

– IA(·) indicator function of the set A

– We assume that B does not bid more than x0

– Utility equal to 0 if x < y (i.e., C wins the bid) and positive if y < x < x0 (i.e., B
wins the bid)

• If B does not know C ’s true value, then max
x

min
y
u(x, y) = 0 since C could bid

more than x0 and miny u(x, y) = 0, so that there is no incentive for B to bid when
using this principle

• If B knows that C ’s true value is y0 < x0, then the maximin solution for B is a value
slightly larger than y0
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SEQUENTIAL GAMES

• In sequential games, the participants make decisions over time, usually in alternation

• The payoffs could accrue cumulatively during the sequence of play, as with tricks
taken in the card game bridge, or the payoff may be determined only at the end of
the sequence, as with the checkmate in a game of chess

• Often, the payoffs are stochastic

• We focus on two-person sequential games with perfect information, meaning that, at
every stage, each opponent knows the choice that was made by the other

✐
✐
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90 4 Sequential Games

Conceptually, one could treat a sequential game as a simultaneous game, since, in
principle, both players might, at the outset, completely prescribe all their choices
at each decision node, for all possible choices of the opponent and for all possible
values that are realized at the chance nodes. But this is often unrealistic—in the
context of chess, the bimatrix for the game would have a row and column for every
sequence of lawful moves.

As a simple sequential example, consider a version of the Entry Deterrence Game,
developed by Dixit (1980). Suppose the Islamic State in Iraq and Syria (ISIS) is
deciding whether or not to annex territory in Iraq. If they invade, then Iraq must
decide whether to fight or acquiesce. This example assumes that the payoffs are non-
random and known to both parties, so the game tree is actually a decision tree, since
there are no chance nodes. Figure 4.1 shows this decision tree, with payoff pairs at the
termini for each decision path. The hypothetical payoffs are in billions of dollars; the
first payoff is what ISIS receives, and the second is what Iraq receives. The intuition
is that if ISIS invades and Iraq chooses to fight, then ISIS will eventually win and
keep the territory, which is worth $5 billion, but both parties pay a cost for conflict.

Fig. 4.1 An illustration of a game for which one of the equilibria, (Not Invade, Fight), is not a
subgame perfect Nash equilibrium.

This game is sufficiently simple that it can be written in simultaneous form, as
shown in Table 4.1. The rows are the choices ISIS can make, and the columns are
the choices that Iraq can make. One can see that there are two Nash equilibria: one
of them is the impossible (Not Invade, Fight) and the other is (Invade, Acquiesce).
In both cases, neither opponent gains from a unilateral change in its choice.

Table 4.1 The payoff table for an ISIS-Iraq game. The rows indicate whether the first player, ISIS,
decides to invade or not. The columns indicate whether Iraq decides to fight or not.

Fight Acquiesce

Invade (–3, –8) (5, –5)
Don’t Invade (0, 0) (0, 0)
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SEQUENTIAL GAMES
Sequential games are specified in terms of several elements:

• A set of n opponents (often n = 2)

• A game tree, which describes how the game develops, with decision nodes, chance
nodes and terminal nodes

• Decision node labels, indicating which player owns each node

• A set of moves at each decision node, indicating the choices available to the node
owner

• Distributions at each chance node, describing the values that may be taken by the
corresponding random variable

• Payoffs at the end of each path in the game tree, determining the outcome of the
game
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SEQUENTIAL GAMES
• Suppose the Islamic State in Iraq and Syria (ISIS) is deciding whether or not to annex

territory in Iraq

• If they invade, then Iraq must decide whether to fight or acquiesce

• This example assumes that the payoffs are non-random and known to both parties,
so the game tree is actually a decision tree, since there are no chance nodes

• Payoffs in billions of dollars: first is ISIS’s, and the second is Iraq’s

• If ISIS invades and Iraq chooses to fight, then ISIS wins (a defeat is excluded!) and
conquers the territory, worth $5 billion, but both parties pay a cost for conflict ($3
billion for Iraq and $8 billion for ISIS)

✐
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SEQUENTIAL GAMES

• This is a very simple sequential game where ISIS decides first and then Iraq decides
later (if there is the invasion)

• In this case it is possible to present a bimatrix with the payoffs

• There are two Nash equilibria but one (Not Invade, Fight) is impossible while the
other (Invade, Acquiesce) implies that ISIS will attack and Iraq will surrender (Iraq
fighting back is worse for both sides!)

Fight Acquiesce
Invade (−3,−8) (5,−5)

Not Invade (0,0) (0,0)
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SEQUENTIAL GAMES

• We now present a Defend-Attack-Defend game

• In this game the Defender (she) first deploys her defensive resources, then the
Attacker (he) observes the deployment and chooses his attack and, finally, the
Defender attempts to recover from the attack as best she can

• We present both an influence diagram and a game tree

– Nodes D1 and D2 correspond to the Defender’s first and second decisions, i.e.,
d1 ∈ D1 and d2 ∈ D2, respectively

– Node A represents the Attacker’s decision a ∈ A

– S is a shared uncertainty node about the success of the attack
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SEQUENTIAL GAMES
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92 4 Sequential Games

Figure 4.2 shows coupled influence diagrams in the MAID, with a shared un-
certainty node S , and a game tree, both representing the Defend-Attack-Defend
model. Nodes D1 and D2 correspond to the Defender’s first and second decisions,
d1 and d2, respectively, and node A represents the Attacker’s decision, a. The pos-
sible choices are d1 ∈D1, a ∈A and d2 ∈ D2.

As written, this model assumes that the only relevant uncertainty is the success
level S of the attack, which depends probabilistically on (d1,a)∈D1×A. The payoff
to the Defender depends on (d1,s,d2): the cost of her initial defense, the success of
the attack, and the success of the recovery effort. The payoff to the Attacker depends
on (a,s,d2): the effort in mounting his attack, its success, and the success of the
recovery effort. The model may be easily generalized so that the outcome of the
recovery effort is also a random variable.

(a) Multi-agent influence diagram for the Defend-Attack-Defend game.

(b) The Defend-Attack-Defend game tree.

Fig. 4.2 Two views of the Defend-Attack-Defend model. The MAID shows the information avail-
able to each opponent at each stage of the game, and the relationships between utilities, decisions,
and chance. The game tree shows the sequence of play, which is helpful in backwards induction.18



SEQUENTIAL GAMES

• In the previous slide the MAID shows the information available to each opponent
at each stage of the game, and the relationships between utilities, decisions, and
chance, while the game tree shows the sequence of play, which is helpful in
backwards induction (the computational technique used to find the optimal decisions)

• As written, this model assumes that the only relevant uncertainty is the success level
S of the attack, which depends probabilistically on (d1, a) ∈ D1 ×A

• The payoff to the Defender depends on (d1, s, d2): the cost of her initial defense, the
success of the attack, and the success of the recovery effort

• The payoff to the Attacker depends on (a, s, d2): the effort in mounting his attack, its
success, and the success of her recovery effort

• The model may be easily generalised so that the outcome of the recovery effort is
also a random variable
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SEQUENTIAL GAMES

• Game theory needs the Defender to know the Attacker’s utilities and probabilities,
and the Attacker to know the Defender’s utilities and probabilities, and for both to
know that these are common knowledge

• Often, the utility functions and probability assessments depend upon all of d1, s, a,
and d2 (i.e., the utility and probability are affected not only by the chance outcome,
but also by the choices of each opponent)

• However here we make the simplifying assumption that utilities and probabilities
depend only upon the outcome of the opponent’s decision, but not also on the deci-
sion itself

• In such cases, denote the Defender’s and Attacker’s utility functions by uD(d1, s, d2)
and uA(a, s, d2), respectively, and their probability assessments about the success
of attack by pD(S = s|d1, a) and pA(S = s|d1, a), respectively

20



SEQUENTIAL GAMES
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SEQUENTIAL GAMES

• Intuition would suggest to choose first the Defender’s initial optimal defense d∗1 , then
the optimal attack a∗(d∗1) after observing d∗1 and, finally, the optimal recovery action
d∗2(d

∗
1, s), after observing the consequence s of the previous actions

• But this is computationally unfeasible ⇒ go backwards and use backwards induction

– Find the optimal defense d∗2(d
∗
1, s) for any pair (d1, s)

– For each pair (d1, a), both Defender and Attacker can compute their expected
utilities, since they have specified their own distributions of the consequences s
for each (d1, a) and their own utilities associated to their actions (d1 for Defender
and a for Attacker, consequence s and optimal decision d∗2)

– Both expected utilities are known to both opponents (common knowledge!)

– For each initial decision d1, the Attacker finds his optimal attack a∗(d1)

– Finally, the Defender chooses her optimal initial defense d∗1, knowing which
optimal attack will be chosen by the opponent and her optimal recovery action
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SEQUENTIAL GAMES
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Fig. 4.2 Two views of the Defend-Attack-Defend model. The MAID shows the information avail-
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and chance. The game tree shows the sequence of play, which is helpful in backwards induction.

• Using backwards induction, at nodeD2 for the game tree above, the Defender’s best
response after observing (d1, s) ∈ D1 × S is d∗2(d1, s) = argmax

d2∈D2

uD(d1, s, d2)

• Under the common knowledge assumption, the Defender’s behaviour at D2 will be
anticipated by the Attacker

• At node S, Defender’s expected utility associated with each (d1, a) ∈ D1 × A :
ψD(d1, a) =

∫
uD(d1, s, d∗2(d1, s))pD(S = s|d1, a)ds

• At node S, Attacker’s expected utility associated with each (d1, a) ∈ D1 × A:
ψA(d1, a) =

∫
uA(a, s, d∗2(d1, s))pA(S = s|d1, a)ds

• Both expected utilities are known to both opponents
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• The Attacker now finds his optimal attack at node A, after observing the Defender’s
move d1 ∈ D1, by solving a∗(d1) = argmax

a∈A
ψA(d1, a)

• Knowing this, the Defender finds her maximum expected utility decision at node D1

through d∗1 = argmax
d1∈D1

ψD(d1, a
∗(d1)), which gives the solution to the game

• Assuming common knowledge, rational players, and perfect information, Game
Theory prescribes that

– The Defender should choose d∗1 ∈ D1 at node D1

– The Attacker should choose attack a∗(d∗1) ∈ A at node A after observing d∗1
– The Defender, after observing s ∈ S, should choose d∗2(d

∗
1, s) ∈ D2 at node D2

24



ARA FOR SEQUENTIAL GAMES

• ARA can be used in sequential games, and it allows one to drop the assumption that
all utilities and probabilities are common knowledge

• From the ARA perspective, in the Defend-Attack-Defend model, the Attacker’s
decision at node A is uncertain to the Defender, and she must model her uncertainty
through a random variable

• This is reflected in the influence diagram and the game tree (next slide), where the
Attacker’s decision node A has been converted to a chance node

• The Defender needs to assess pD(a|d1), her predictive distribution about which
attack a will be chosen at node A for each d1 ∈ D1

• Additionally, she must make the (more standard) assessments about uD(d1, s, d2)
and pD(s|d1, a)

25



ARA FOR SEQUENTIAL GAMES
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94 4 Sequential Games

4.2 ARA for Sequential Games

ARA can be used in sequential games, and it allows one to drop the assumption that
all utilities and probabilities are common knowledge. To describe this alternative to
the previous solution, consider again the Defend-Attack-Defend model.

From the ARA perspective, the Attacker’s decision at node A is uncertain to the
Defender, and she must model her uncertainty through a random variable. This is
reflected in the influence diagram and the game tree in Figure 4.3, where the At-
tacker’s decision node A has been converted to the chance node A . The Defender
needs to assess pD(A | d1), her predictive distribution about which attack will be
chosen at node A for each d1 ∈D1. Additionally, she must make the (more standard)
assessments about uD(d1,s,d2) and pD(S | d1,a).

(a) The influence diagram for the ARA solution of the Defend-Attack-Defend game.

(b) The game tree for the ARA solution of the Defend-Attack-Defend game.

Fig. 4.3 The Defender’s decision problem, represented as an influence diagram and as a game tree.

Given these, the Defender works backward in the tree in Figure 4.3(b) to solve
her problem. At node D2 she computes her maximum utility action d∗2(d1,s) for
each (d1,s) ∈ D1× S, as in (4.1). Then, at node S , she finds her expected utility
ψD(d1,a) for each (d1,a) ∈D1×A, as in (4.2). The next step employs her subjective
probability assessment of what the Attacker will do, pD(A | d1), in order to compute
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Given these, the Defender works backward in the tree in Figure 4.3(b) to solve
her problem. At node D2 she computes her maximum utility action d∗2(d1,s) for
each (d1,s) ∈ D1× S, as in (4.1). Then, at node S , she finds her expected utility
ψD(d1,a) for each (d1,a) ∈D1×A, as in (4.2). The next step employs her subjective
probability assessment of what the Attacker will do, pD(A | d1), in order to compute

• The Defender works backward in the tree to solve her problem

• At node D2 she computes her optimal action d∗2(d1, s) for each (d1, s) ∈ D1 × S,
by d∗2(d1, s) = argmax

d2∈D2

uD(d1, s, d2)

• Then, at node S, for each (d1, a) ∈ D1 ×A, she finds her expected utility:
ψD(d1, a) =

∫
uD(d1, s, d∗2(d1, s))pD(S = s|d1, a)ds, for each (d1, a) ∈ D1 ×A

• Then, her subjective probability assessment of what the Attacker will do, pD(A|d1),
is used to compute her expected utility at node A for each d1 ∈ D1:
ψD(d1) =

∫
ψD(d1, a)pD(A = a|d1)da

• The Defender finds her maximum expected utility at D1 as d∗1 = argmax
d1∈D1

ψD(d1)

• Thus, backwards induction shows that the Defender’s best strategy is to choose first
d∗1 at node D1, and later, after observing s ∈ S, choose d∗2(d

∗
1, s) at node D2
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• As usual, ARA requires the decision maker to assess pD(a|d1). This could be done
through some form of risk analysis (non-strategic behaviour), or by developing a
model for the strategic analysis of the opponent

• Given pD(a|d1), the analysis of the Attacker’s decision problem, as seen by the
Defender, is shown in the next two figures, where the Attacker’s probabilities and
utilities are assessed by the Defender
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(If the choice sets are not continuous, the Defender would reason similarly, but re-
place integrals with sums and find the predictive distribution over a set.)

(a) Influence diagram for the Defender’s view of the Attacker’s problem.

(b) Game tree for the Defender’s view of the Attacker’s problem.

Fig. 4.4 The Defender’s view of the Attacker’s decision problem.

When the beliefs are complex, the Defender’s predictive distribution can be ap-
proximated using Monte Carlo. Specifically, for each d1 ∈ D1, the following algo-
rithm finds the Defender’s belief about the probability of each attack.
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(If the choice sets are not continuous, the Defender would reason similarly, but re-
place integrals with sums and find the predictive distribution over a set.)
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When the beliefs are complex, the Defender’s predictive distribution can be ap-
proximated using Monte Carlo. Specifically, for each d1 ∈ D1, the following algo-
rithm finds the Defender’s belief about the probability of each attack.
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• The assessment of the Attacker’s probabilities and utilities may be based upon
historical data and expert opinion, or, if those salient information is not available,
then the Defender may choose to use a noninformative distribution pD(a|d1)

• In the former case, in order to elicit pD(a|d1), the Defender must assess uA(a, s, d2),
pA(s|d1, a), and pA(d2|d1, a, s), i.e., Attacker’s probabilities and utilities

• In general, she does not know these quantities, and represents her uncertainty
through a joint distribution F on the random quantities UA(a, s, d2), PA(s|d1, a),
and PA(d2|d1, a, s)

• These distributions might be elicited in various ways, e.g. Dirichlet process centered
at Defender’s probabilities

• The Defender then solves her perception of the Attacker’s decision problem using
backwards induction over the game tree, propagating her uncertainty, encoded by
F , to get distributions over the random action A∗(d1) for each d1
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Specifically, if all choice sets are continuous, the Defender solves as follows

• At decision node D2, compute the random expected utilities
(d1, a, s) → ΨA(d1, a, s) =

∫
UA(a, s, d2)PA(D2 = d2|d1, a, s)dd2

• At chance node S, compute the random expected utilities
(d1, a) → ΨA(d1, a) =

∫
ΨA(d1, a, s)PA(S = s|d1, a)ds

• At decision node A , compute the random optimal initial decision
d1 → A∗(d1) = argmax

a∈A
ΨA(d1, a)

• Thus, the Defender’s predictive distribution over attacks, conditional on her first

defensive decision d1, is given by
∫ a

0
pD(A = x|d1)dx = Pr[A∗(d1) ≤ a]

• If the choice sets are not continuous, the Defender would reason similarly, but
replacing integrals with sums and finding the predictive distribution over a set
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• When the beliefs are complex, the Defender’s predictive distribution can be

approximated using Monte Carlo simulation

• Specifically, for each d1 ∈ D1, the following algorithm finds the Defender’s belief
about the probability of each attack
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Do, for i = 1, ...,N:

Draw
(
U i

A(a,s,d2),Pi
A(S | d1,a),Pi

A(D2 | d1,a,s)
)
∼ F.

At chance node D2, compute

(d1,a,s)→ ψ i
A(d1,a,s) =

∫
U i

A(a,s,d2) Pi
A(D2 = d2 | d1,a,s) dd2.

At chance node S, compute

(d1,a)→ ψ i
A(d1,a) =

∫
ψ i

A(d1,a,s) Pi
A(S = s | d1,a) ds.

At decision node A, compute

d1→ a∗i (d1) = argmaxa∈Aψ i
A(d1,a).

Approximate
∫ a

0 pD(A = x | d1)dx by #{a∗i (d1) : a∗i (d1)≤ a}/N
where #{·} is the cardinality of the set.

Given F , the Defender’s assessment of pD(A | d1) is straightforward. In many
situations, the random utility UA(a,s,d2) and the random probability PA(S | d1,a)
in F are relatively simple to elicit. However, the assessment of PA(D2 | d1,a,s)
within F can be problematic; the Defender should exploit any information she has
on how the Attacker analyzes her decision problem. She may think he seeks a Nash
equilibrium, or uses level-k thinking; if she has little insight, she can represent that
through some high-variance or non-informative distribution. The situation is similar
to that discussed in Section 2.3.

4.3 Case Study: Somali Pirates

As a concrete example of sequential ARA, consider the decisions made in defending
a ship from piracy. Between 2005 and 2011, pirates threatened shipping in the Gulf of
Aden. No ship within several hundred miles of the Somali coast was safe, and, until
recent successful countermeasures, it was a major issue in international security.

Economic and political changes have led many Somali fishermen to take up
piracy, and infrastructure evolved to support this new enterprise (cf. Carney, 2009).
The infrastructure had multiple agents: village elders who act as the de facto local
government, Somali businessmen who invest in piracy, and negotiators who broker
ransoms for captured ships and crews. So an analyst can model that the pirates as
pragmatic businessmen who pursue their goals strategically.
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• Given F , the Defender’s assessment of pD(a|d1) is straightforward

• In many situations, it is relatively simple to elicit the random utility UA(a, s, d2) and
the random probability PA(s|d1, a) in F

• However, the assessment of PA(d2|d1, a, s) within F can be problematic; the
Defender should exploit any information she has on how the Attacker analyses her
decision problem

• She may think he seeks a Nash equilibrium, or uses level-k thinking; if she has
little insight, she can represent that through some high-variance or non-informative
distribution
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• As a concrete example of sequential ARA, consider the decisions made in defending
a ship from piracy

• Between 2005 and 2011, pirates threatened shipping in the Gulf of Aden

• No ship within several hundred miles of the Somali coast was safe and it was a major
issue in international security

• Economic and political changes have led many Somali fishermen to take up piracy,
and infrastructure evolved to support this new enterprise

• The infrastructure had multiple agents: village elders who act as the de facto local
government, Somali businessmen who invest in piracy, and negotiators who broker
ransoms for captured ships and crews

• So an analyst can model the pirates as pragmatic businessmen who pursue their
goals strategically
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• A typical attack is undertaken by a small groups of about ten men in fast boats which
depart from a mother-ship

• If successful, about 50 pirates are left on-board to pilot the captured ship into harbor,
while another 50 or so pirates provide logistical support from the shore

• The goal is ransom rather than theft; it is more profitable, and the pirates reinvest
part of their gains in equipment and training

• First consider anti-piracy strategy from the perspective of a ship owner, structuring
the problem as a game tree

• This leads to a sequential Defend-Attack-Defend game between the Owner and the
Pirates, following the formulation in Sevillano, Rios Insua and Rios (2012).
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• For the first defensive decision, the Owner may choose among many options,
including various levels of on-board armed security and selecting an alternate (longer)
route that avoids the Gulf of Aden

• Next, the Pirates, who have a network of spies that provide information about
security, cargo and crew, respond to the Owner’s initial decision by either attacking
or not attacking the ship

• If the pirate attack is successful, the Owner will have to decide how much to pay in
ransom, or perhaps she will hire armed forces to re-seize the ship

• Specifically, assume that the Owner can select one of the following four defensive
actions (i.e., elements of D1):

– d01: Do nothing, i.e., no defensive action is taken

– d11: Hire an armed guard to travel on the ship

– d21: Hire a team of two armed guards for the ship

– d31: Use the Cape of Good Hope route, not the Suez Canal
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• Once the Owner has made her initial choice, the Pirates observe it and decide
whether or not to attack (a1 and a0, respectively, in A)

• An attack either results in the ship being hijacked (S = 1) or not (S = 0), with
probabilities that depend on the Owner’s initial choice

• If the ship is hijacked, then the Owner has three possible responses (elements of
D2):

– d02: Do nothing, i.e., refuse to pay the Pirates’ ransom

– d12: Pay a ransom, thus recovering the ship and crew

– d22: Pay the Navy (i.e., military units) to recapture the ship and crew

• Obviously, this framing of the decision problem is only an approximation to the true
complexity of the application, but it captures the salient elements
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Fig. 4.5 Game tree for the Somali pirates case study.

forcing the bulk of her modeling to focus on assessments of probabilities over the
Pirates’ actions conditional on her own. Thus, to solve her decision problem, she
needs to assess pD(A | d1), her predictive probability of an attack given each d1 ∈
D1. Additionally, she needs to make assessments pD(S | d1,a1) and uD(cD), with
cD representing her monetary cost equivalent from the multi-attribute consequences
associated with each branch in the tree. These assessments are easier to make because
they are non-strategic, and also because in this application there is relevant historical
information.

For the Owner, the possible consequences are loss and ransom of the ship, the
costs associated with defense preparation, the costs associated with a possible battle,
and the profit from a voyage that is either not attacked or which successfully repels
armed boarders. These costs are not all commensurate—an attack, successful or un-
successful, could include loss of life on either side. This analysis assumes that the
Owner puts no value on the life of a Somali pirate, and uses the value of a statistical
life for each member of the crew (including any guards that may be hired). Viscusi
and Aldy (2003) reviews various methods for estimating the value of a statistical life
(e.g., the total income over the remainder of an expected lifespan); this analysis uses
the one in Martinez and Mendez (2009).

More specifically, the Owner’s direct costs for the defensive actions in D1 are as
follows:
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Fig. 4.5 Game tree for the Somali pirates case study.

forcing the bulk of her modeling to focus on assessments of probabilities over the
Pirates’ actions conditional on her own. Thus, to solve her decision problem, she
needs to assess pD(A | d1), her predictive probability of an attack given each d1 ∈
D1. Additionally, she needs to make assessments pD(S | d1,a1) and uD(cD), with
cD representing her monetary cost equivalent from the multi-attribute consequences
associated with each branch in the tree. These assessments are easier to make because
they are non-strategic, and also because in this application there is relevant historical
information.

For the Owner, the possible consequences are loss and ransom of the ship, the
costs associated with defense preparation, the costs associated with a possible battle,
and the profit from a voyage that is either not attacked or which successfully repels
armed boarders. These costs are not all commensurate—an attack, successful or un-
successful, could include loss of life on either side. This analysis assumes that the
Owner puts no value on the life of a Somali pirate, and uses the value of a statistical
life for each member of the crew (including any guards that may be hired). Viscusi
and Aldy (2003) reviews various methods for estimating the value of a statistical life
(e.g., the total income over the remainder of an expected lifespan); this analysis uses
the one in Martinez and Mendez (2009).

More specifically, the Owner’s direct costs for the defensive actions in D1 are as
follows:

• The game tree represents the sequence of decisions and outcomes faced by the
Owner and the Pirates

• The nodes D1 and D2 correspond to the Owner’s first and second decisions
respectively, the node A represents the Pirates’ decision, and the chance node S
represents the outcome of the attack (if undertaken)

• The pair (cD, cA) represents the consequences to the Owner and the Pirates,
respectively, from the corresponding sequence of decisions and outcomes
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• The Owner’s sequential ARA decision problem is mapped as a game tree in which
the Pirates’ decision node A has been replaced by a chance node

• This shows that the Pirates’ decision is unknown in advance to the Owner, forcing
the bulk of her modeling to focus on assessments of probabilities over the Pirates’
actions conditional on her own

• Thus, to solve her decision problem, she needs to assess pD(a|d1), her predictive
probability of an attack given each d1 ∈ D1

• Additionally, she needs to make assessments pD(s|d1, a1) and uD(cD), with cD
representing her monetary cost equivalent from the multi-attribute consequences
associated with each branch in the tree

• These assessments are easier to make because they are non-strategic, and also
because in this application there is relevant historical information
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Fig. 4.6 The game tree representing the Owner’s decision theory problem for the Somali pirates
case. The numbers in the terminal nodes represent the Owner’s total cost for that path, as computed
in Table 4.1.

• e0, if the Owner hires no guards (i.e., d0
1).

• e0.05M, if the Owner hires one guard (i.e., d1
1). This includes the six-

month salary, equipment, travel expenses, and so forth.
• e0.15M, if the Owner hires two guards (i.e., d2

1). This includes the six-
month salaries for two armed guards, with better equipment and associated
expenses.

• e0.5M, if the Owner chooses to circumnavigate the Cape of Good Hope
(i.e., d3

1). The increased distance entails higher operating expenses and op-
portunity costs.

Similarly, the Owner’s costs for the defensive actions in D2 are:

• e0, if the ship is attacked and the Owner pays no ransom (i.e., d0
2). (This

is the direct cost; the loss of the ship and cargo is accounted for separately
in Table 4.1.)

• e2.3M, if the ship is successfully attacked and the Owner pays a ransom
(i.e., d1

2). The e2.3M figure is the average of recent ransoms reported by
Carney (2009):e2.2M for Le Ponant; e2M for MT Stolt Melati 5; e1.1M
for MT Stolt Valor; e3M for Sirius Star; and e3.2M for MV Faina. The
ransom payment could be treated as a random variable, but for simplicity
it is assumed to be fixed.

• e0.2M, if the ship is attacked and the Owner calls for the Navy (i.e., d2
2).

This figure is based on fees for military intervention using the international
coalition ships already deployed in the area.
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• For the Owner, the possible consequences are loss and ransom of the ship, the costs
associated with defense preparation, the costs associated with a possible battle, and
the profit from a voyage that is either not attacked or which successfully repels armed
boarders

• These costs are not all commensurate since, e.g., an attack, successful or
unsuccessful, could include loss of life on either side

• This analysis assumes that the Owner puts no value on the life of a Somali pirate,
and uses the value of a statistical life for each member of the crew (including any
guards that may be hired)

• Note that there are many methods for estimating the value of a statistical life (e.g.,
the total income over the remainder of an expected lifespan)

• Now we provide Owner’s direct costs for the defensive actions in D1 and D2
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• Owner’s direct costs for the defensive actions in D1

– e0, if the Owner hires no guards (i.e., d01)

– e0.05M, if the Owner hires one guard (i.e., d11) and this includes the six-month
salary, equipment, travel expenses, and so forth

– e0.15M, if the Owner hires two guards (i.e., d21) this includes the six-month
salaries for two armed guards, with better equipment and associated expenses

– e0.5M, if the Owner chooses to circumnavigate the Cape of Good Hope (i.e.,
d31), since the increased distance entails higher operating expenses

• Owner’s direct costs for the defensive actions in D2

– e0, if the ship is attacked and the Owner pays no ransom (i.e., d02). (This is the
direct cost; the loss of the ship and cargo is accounted for separately later)

– e2.3M, if the ship is successfully attacked and the Owner pays a ransom (i.e.,
d12)- The average of some actual ransoms is e2.3M, and here the ransom to be
paid, for simplicity, is assumed to be fixed although it could be treated as a r.v.

– e0.2M, if the ship is attacked and the Owner calls for the Navy (i.e., d22), as
based on the fees for the international coalition ships already in the area
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• The Owner’s direct cost for the deaths depends only on insurance and litigation but

the ARA should take deaths directly into account

• For this example, the analysis assumes that if an attack is successfully repelled
(S = 0), then no lives are lost

• In a successful attack (S = 1), the analysis assumes that all armed guards are
killed and, depending on the chosen response at the node D2 , there may be
additional fatalities:

– if the Owner does not ransom the ship, the angry Pirates kill four of the crew

– if the Owner pays the ransom, no one else dies

– if the hijacked ship is rescued by the Navy, there are two more deaths

• A slightly more complex analysis would properly treat the number of deaths and their
costs as random variables, but this discussion omits that and follows Martinez and
Mendez (2009) in fixing the statistical value of a (Spanish) life at e2.04M

• Similarly, we assume the depreciated value of the ship and its cargo is e7M
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Besides these costs, some paths in the tree entail deaths. The Owner’s direct cost
for these depends upon insurance and litigation but the ARA should take deaths into
account.

For this example, the analysis assumes that if an attack is successfully repelled
(S = 0), then no lives are lost. But in a successful attack (S= 1), the analysis assumes
that all armed guards are killed and, depending on the chosen response at the node
D2 , there may be additional fatalities: (1) if the Owner does not ransom the ship,
the angry Pirates kill four of the crew; (2) if the Owner pays the ransom, no one
else dies; (3) if the hijacked ship is rescued by the Navy, there are two more deaths.
A slightly more complex analysis would properly treat the number of deaths and
their costs as random variables, but this discussion omits that and follows Martinez
and Mendez (2009) in fixing the statistical value of a (Spanish) life at e2.04M. In
similar simplification, we assume the depreciated value of the ship and its cargo is
e7M.

Table 4.2 summarizes the costs cD for the Owner that are associated with each
scenario (i.e., each path in the tree shown in Figure 4.5). Clearly, if there is no attack,
then S = 0.

Table 4.2 The Owner’s costs associated with different tree paths.

D1 S D2 Ship loss Action costs Lives lost cD

do nothing S = 1 don’t pay 1 0 + 0 0 + 4 15.16
do nothing S = 1 pay ransom 0 0 + 2.3M 0 + 0 2.30
do nothing S = 1 call Navy 0 0 + 0.2M 0 + 2 4.28
do nothing S = 0 0 0 0 0.00
hire guard S = 1 don’t pay 1 0.05M + 0 1 + 4 17.25
hire guard S = 1 pay ransom 0 0.05M + 2.3M 1 + 0 4.39
hire guare S = 1 call Navy 0 0.05M + 0.2M 1 + 2 6.37
hire guard S = 0 0 0.05M 0 0.05
hire team S = 1 don’t pay 1 0.15M + 0 2 + 4 19.39
hire team S = 1 pay ransom 0 0.15M + 2.3M 2 + 0 6.53
hire team S = 1 call Navy 0 0.15M + 0.2M 2 + 2 8.51
hire team S = 0 0 0.15M 0 0.15
d3

1 (alternative route) 0 0.5M 0 0.50

If the Owner has constant absolute risk aversion, then her utility function has the
form uD(cD) = 1−exp(−α×cD), with α > 0 (see Section 2.2.1). Constant risk aver-
sion implies that when choosing between a guaranteed payment and a gamble, her
choice is the same for any constant multiple of both the payment and the expected
value of the gamble. As a sensitivity analysis, this ARA considers her optimal deci-
sion for α ∈ {0.1,0.4,1,2,5}.

Based on historical information (Carney, 2009), the ARA assumes that the Owner
believes that an attack will be successful when no armed guards are hired is 0.4, or
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• The owner is risk averse, with utility function uD(cD) = 1− exp(−αcD), α > 0

• For sensitivity analysis ARA considers optimal decisions for α ∈ {0.1,0.4,1,2,5}

• Based on historical information, the ARA assumes that the Owner believes
pD(S = 1|a1, d01) = 0.4. i.e. a successful attack when no armed guards are hired

• It also assumes a successful attack with pD(S = 1|a1, d11) = 0.1 with one guard,
and pD(S = 1|a1, d21) = 0.05 with two guards

• In order to implement an ARA, the Owner must estimate the probability of attack
conditional on each of her initial defensive choices

• Using historical data, the probability of an attack is about 0.005 but this does not
account for the defensive choices, nor the intelligence network used by the Pirates
to identify ships with valuable cargo and vulnerabilities, so using 0.005 as the attack
probability implies a non-strategic opponent
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• We assume that the Owner performs a level-2 analysis

• Assume that the Owner believes that the Pirates are expected utility maximisers who
derive the Owner’s uncertainty about the Pirates’ decision on whether to attack from
her uncertainty about the Pirates’ probabilities and utilities

• Thus, the Owner must analyse the decision problem from the Pirates’ perspective
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Fig. 4.7 Game tree representing the Owner’s perception of the decision problem of the Somali
pirates.

Table 4.3 Payoffs to the Pirates according to each paths in their game tree, i = 1, . . . ,n. These
calculations assume that all ships are equivalent in expectation for all relevant risks and rewards.

A S D2 Ship kept Profit Lives lost cA
no attack 0 0 0 0.00

attack S = 1 don’t pay 1 −0.03M 0 0.97
attack S = 1 pay ransom 0 2.27M 0 2.27
attack S = 1 call Navy 0 −0.03M 5 −1.28
attack S = 0 0 −0.03M 2 −0.53

risk seeking, and thus have utility function of the form uA(cA) = exp(c× cA), with
c > 0. The Owner is not sure about the value c and assigns it the uniform distribution
on [0,20]. The uncertainty over c induces uncertainty over uA, providing UA.

The Pirates have beliefs about the probability of an attack being successful,
conditional on the observed defensive choices made by the Owner. In order to
model these, the Owner uses subjective distributions. Specifically, suppose she
assumes that PA(S = 1 | a1,d0

1) ∼ Beta(40,60) when no defensive action taken,
that PA(S = 1 | a1,d1

1) ∼ Beta(10,90) when one armed guard is hired, and that
PA(S = 1 | a1,d2

1) ∼ Beta(50,950) when two guards are hired. Here, the expected
values of these distributions equal the assessed probabilistic beliefs of the Defender
for the same situation, reflecting their common knowledge of past exploits, but in
other situations the means could be different.

For the other ships, the Owner does not know whether they carry armed guards,
nor, if they do, whether there are one or two of them. So, to her, the probability that
the Pirates assign to a successful attack on another ship is a mixture of the three
previous beta distributions. Of course, the Pirates have better information than the
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• The set of alternatives for the Pirates has expanded to include alternatives ai ∈ A,

for i = 2, . . . , n, representing the Pirates’ option to attack ships owned by others

• Also, there are new chance nodes D2 at the end of the tree paths starting at ai,
which represent the response of ships i = 2, . . . , n to a hijacking attempt, since
these are uncertainties from the Pirates’ standpoint

• The Owner’s analysis of the Pirates’ decision making enables probabilistic
assessment of the perceived preferences of the Pirates

• The Owner’s uncertainty over these preferences is modeled through the random
utility function UA(a, s, d2), for a ∈ A = {a0, a1, . . . , an}

• The Owner’s uncertainty about the Pirates’ beliefs regarding a successful attack on
her ship and the subsequent payoff is modeled by the random variables
PA(S = 1|a1, d1) and PA(D2|d1, a1, S = 1)

• Similarly, The Owner’s uncertainty about the Pirates’ beliefs regarding attacks upon
other ships is modeled by PA(S = 1|ai) and PA(D2|ai, S = 1) for i = 2, . . . , n

• To begin, we assume that the n ships are similar
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• The Owner thinks that the relevant outcomes for the Pirates are the net assets gained

and the number of lives lost

• Carney (2009) reports that the average cost of an attack is about e30,000 and the
average ransom paid is about e2.3M

• The Owner assumes that two pirates are killed when an attack is repelled, no pirates
die in a successful attack and five pirates die if the Owner calls in the Navy

• We could treat these outcomes as random variables, through a slightly more
elaborate analysis

• The Owner knows that her ship is less valuable to the Pirates than it is to her

• The Pirates can sell its cargo, sell it for scrap, or use it as a mother ship for new
attacks

• So the Owner assesses the economic value of the ship to the Pirates at e1M

• Also, suppose the Owner thinks that Pirates value the life of one of their own at
e0.25M
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Fig. 4.7 Game tree representing the Owner’s perception of the decision problem of the Somali
pirates.

Table 4.3 Payoffs to the Pirates according to each paths in their game tree, i = 1, . . . ,n. These
calculations assume that all ships are equivalent in expectation for all relevant risks and rewards.

A S D2 Ship kept Profit Lives lost cA
no attack 0 0 0 0.00

attack S = 1 don’t pay 1 −0.03M 0 0.97
attack S = 1 pay ransom 0 2.27M 0 2.27
attack S = 1 call Navy 0 −0.03M 5 −1.28
attack S = 0 0 −0.03M 2 −0.53

risk seeking, and thus have utility function of the form uA(cA) = exp(c× cA), with
c > 0. The Owner is not sure about the value c and assigns it the uniform distribution
on [0,20]. The uncertainty over c induces uncertainty over uA, providing UA.

The Pirates have beliefs about the probability of an attack being successful,
conditional on the observed defensive choices made by the Owner. In order to
model these, the Owner uses subjective distributions. Specifically, suppose she
assumes that PA(S = 1 | a1,d0

1) ∼ Beta(40,60) when no defensive action taken,
that PA(S = 1 | a1,d1

1) ∼ Beta(10,90) when one armed guard is hired, and that
PA(S = 1 | a1,d2

1) ∼ Beta(50,950) when two guards are hired. Here, the expected
values of these distributions equal the assessed probabilistic beliefs of the Defender
for the same situation, reflecting their common knowledge of past exploits, but in
other situations the means could be different.

For the other ships, the Owner does not know whether they carry armed guards,
nor, if they do, whether there are one or two of them. So, to her, the probability that
the Pirates assign to a successful attack on another ship is a mixture of the three
previous beta distributions. Of course, the Pirates have better information than the

• The aggregated monetary equivalent is cA, in the last column
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• The Owner also needs to model her beliefs about the extent to which Pirates are
risk-seeking with respect to profits

• She thinks they have utility function of the form uA(cA) = exp(c× cA), with c > 0

• The Owner is not sure about c and chooses a uniform distribution on [0,20] for it

• The uncertainty over c induces uncertainty over uA, providing UA

• The Owner uses subjective distributions to model Pirates’ beliefs about the
probability of a successful attack, conditional on her observed defensive choices

• Suppose she assumes that PA(S = 1|a1, d01) ∼ Beta(40,60) with no defensive
action taken, that PA(S = 1|a1, d11) ∼ Beta(10,90) when one armed guard is
hired, and that PA(S = 1|a1, d21) ∼ Beta(50,950) when two guards are hired

• Here, the expected values of these distributions equal the assessed probabilistic
beliefs of the Defender for the same situation, reflecting their common knowledge of
past exploits, but in other situations the means could be different
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• For the other ships, the Owner does not know whether they carry armed guards, nor,
if they do, whether there are one or two of them

• So, to her, the probability that the Pirates assign to a successful attack on another
ship is a mixture of the three previous beta distributions and, in absence of more
precise information, she puts equal weight on all three components

• Finally, for the level-2 ARA, the Owner must assess how the Pirates think she will
respond to a successful attack

• It is reasonable to imagine that the Pirates believe her initial decision is a clue to her
response

• If her first decision were aggressive (i.e., to hire two armed guards), then her
response to an attack is also likely to be aggressive (i.e., to call in the Navy)
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• To reflect this concretely, the Owner believes that the Pirates have Dirichlet
distributions over her three response options (write off the loss, pay the ransom, or
call in the Navy)

– When she did not hire guards, she thinks the Pirates believe that all three
responses are equally likely and use PA(D2|d01, A = a1, S = 1) ∼ Dir(1,1,1)

– When she hired one guard, she thinks the Pirates believe that she is more likely
to call in the Navy and use PA(D2|d11, A = a1, S = 1) ∼ Dir(0.1,4,6)

– If she hired two guards, then PA(D2|d21, A = a1, S = 1) ∼ Dir(0.1,1,10),
implying she is much more likely to call in the Navy

• As before, for the other ships that are possible targets, the Owner places a
mixture of Dirichlet distributions over the Pirates’ beliefs about their responses and it
is convenient to assume that PA(D2|A = ai, S = 1) puts equal weight on all three
components
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• With all this machinery, it is now possible for the Owner to find the level-1 solution to
the Pirates’ decision problem, using backwards induction to solve her perception of
the problem
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Owner, because of their informant network. For specificity, assume the Owner puts
equal weight on all three components.

Finally, for the level-2 ARA, the Owner must assess how the Pirates think she will
respond to a successful attack. It is reasonable to imagine that the Pirates believe her
initial decision is a clue to her response. If her first decision were aggressive (i.e., to
hire two armed guards), then her response to an attack is also likely to be aggressive
(i.e., to call in the Navy). To reflect this concretely, the Owner believes that the Pirates
have Dirichlet distributions over her three response options (write off the loss, pay
the ransom, or call in the Navy). When she did not hire guards, she thinks the Pirates
use PA(D2 | d0

1 ,A = a1,S = 1)∼ Dirichlet(1,1,1) (so all three responses are equally
likely). But when she hired one guard, she thinks they use PA(D2 | d1

1 ,A = a1,S =
1)∼ Dirichlet(0.1,4,6), and thus is more likely to call in the Navy. And if she hired
two guards, then PA(D2 | d2

1 ,A = a1,S = 1) ∼ Dirichlet(0.1,1,10), implying she is
much more likely to call in the Navy. As before, for the other ships that are possible
targets, the Owner places a mixture of Dirichlet distributions over the Pirates’ beliefs
about their responses. It is convenient to assume that PA(D2 | A = ai,S = 1) puts
equal weight on all three components.

With all this machinery, it is now possible for the Owner to find the level-1 solu-
tion. She uses backwards induction to solve her perception of the Pirates’ decision
problem in Fig. 4.7.

1. She computes the random expected utilities corresponding to the Pirates’
selection of a1, conditional on her initial defense choices d1 ∈D1 \{d3

1}:

ΨA(d1,a1) =

[
∑

d2∈D2

UA(a1,S = 1,d2) PA(D2 = d2 | d1,a1,S = 1)

]
×

PA(S = 1 | d1,a1)+PA(S = 0 | d1,a1)UA(a1,S = 0).

2. She computes the random expected utilities corresponding to the Pirates’
selection of ai for i = 2, . . . ,n:

ΨA(ai) =

[
∑

d2∈D2

UA(ai,S = 1,d2) PA(D2 = d2 | ai,S = 1)

]
×

PA(S = 1 | ai) + PA(S = 0 | ai) UA(ai,S = 0).

3. She computes the Owner’s predictive probabilities of being attacked (A=
a1) conditional on the initial defense choices, d1 ∈ D1 \ {d3

1}:

pD(A = a1 | d1) = Pr[ΨA(d1,a1)> max{UA(a0), ΨA(a2), . . . ,ΨA(an)} ].

These probabilities can be approximated through Monte Carlo simulation by
drawing a sample {(uk

A, pk
A)}N

k=1 ∼ (UA,PA) from the Pirates’ random utilities and
probabilities, as assessed by the Owner, and then solving the Pirates’ decision prob-
lem for each draw. This generates an estimate of the probability that the Owner’s
ship is chosen as the target. Specifically, with n possible ships to attack and N Monte
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• The probabilities are approximated through Monte Carlo simulation by drawing a

sample {(ukA, pkA)}Nk=1 ∼ (UA, PA) from the Pirates’ random utilities and
probabilities, as assessed by the Owner, and solving the Pirates’ decision problem
for each draw

• This gives an estimate of the probability that the Owner’s ship is chosen as the target

• Thus, with n possible ships to attack and N Monte Carlo draws, the estimate is
#{1 ≤ k ≤ N : Ψk

A(d1, a
1) > max{ukA(a0),Ψk

A(a
2), . . . ,Ψk

A(a
n)}}

N

• To illustrate, suppose there are nine possible ships that could be attacked

• Under the modeling assumptions described, 50,000 Monte Carlo draws finds that
p̂D(A = a1|d01) = 0.303 is the estimated probability that the Owner’s ship will be
attacked if she does not hire guards, p̂D(A = a1|d11) = 0.026 if she hires one
armed guard, and p̂D(A = a1|d21) = 0.00004 if she hires two armed guards

• So the Owner’s estimate of the probability of attack decreases rapidly when she
obtains protection
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• Given the estimated values of her beliefs about the attack probabilities, she solves
her problem using backwards induction on the tree below

✐
✐

“K25115” — 2015/6/4 — 12:04 — page 103 — ✐
✐

✐
✐

✐
✐

4.3 Case Study: Somali Pirates 103

Fig. 4.7 Game tree representing the Owner’s perception of the decision problem of the Somali
pirates.

Table 4.3 Payoffs to the Pirates according to each paths in their game tree, i = 1, . . . ,n. These
calculations assume that all ships are equivalent in expectation for all relevant risks and rewards.

A S D2 Ship kept Profit Lives lost cA
no attack 0 0 0 0.00

attack S = 1 don’t pay 1 −0.03M 0 0.97
attack S = 1 pay ransom 0 2.27M 0 2.27
attack S = 1 call Navy 0 −0.03M 5 −1.28
attack S = 0 0 −0.03M 2 −0.53

risk seeking, and thus have utility function of the form uA(cA) = exp(c× cA), with
c > 0. The Owner is not sure about the value c and assigns it the uniform distribution
on [0,20]. The uncertainty over c induces uncertainty over uA, providing UA.

The Pirates have beliefs about the probability of an attack being successful,
conditional on the observed defensive choices made by the Owner. In order to
model these, the Owner uses subjective distributions. Specifically, suppose she
assumes that PA(S = 1 | a1,d0

1) ∼ Beta(40,60) when no defensive action taken,
that PA(S = 1 | a1,d1

1) ∼ Beta(10,90) when one armed guard is hired, and that
PA(S = 1 | a1,d2

1) ∼ Beta(50,950) when two guards are hired. Here, the expected
values of these distributions equal the assessed probabilistic beliefs of the Defender
for the same situation, reflecting their common knowledge of past exploits, but in
other situations the means could be different.

For the other ships, the Owner does not know whether they carry armed guards,
nor, if they do, whether there are one or two of them. So, to her, the probability that
the Pirates assign to a successful attack on another ship is a mixture of the three
previous beta distributions. Of course, the Pirates have better information than the
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CASE STUDY: SOMALI PIRATES
• At decision nodeD2, the Owner finds her maximum utility action, conditional on each
d1 ∈ D1 \ {d31}, given by d∗2(d1, a

1, S = 1) = argmax
d2∈D2

uD(cD(d1, S = 1, d2))

• Next, at chance node S she obtains her expected utility as

ΨD(d1, a
1) = pD(S = 1|d1, a1)uD(cD(d1, S = 1, d∗2(d1, a

1, S = 1))) +
+pD(S = 0|d1, a1)uD(cD(d1, S = 0))

• At this point, she uses her assessments of the estimated probability of being at-
tacked, conditional on her initial defense decision, or p̂D(A = a1|d1), to compute
for each d1 ∈ D1 \ {d31} her expected utility at chance node A:
ΨD(d1) = ΨD(d1, a1)p̂D(A = a1|d1)+uD(cD(d1, S = 0))(1− p̂D(A = a1|d1))

• Finally, she finds her maximum expected utility decision at decision node D1 as
d∗1 = argmax

di1∈D1

ΨD(d
i
i), where ΨD(d31) = uD(cD(d31)) is obtained from the table

with the Owner’s costs (see next slide)

• The Defender’s best strategy is to first choose d∗1 at node D1, and, if the ship is
hijacked, respond by choosing d∗2(d

∗
1, a

1, S = 1) at node D2

57



CASE STUDY: SOMALI PIRATES

✐
✐

“K25115” — 2015/6/4 — 12:04 — page 101 — ✐
✐

✐
✐

✐
✐

4.3 Case Study: Somali Pirates 101

Besides these costs, some paths in the tree entail deaths. The Owner’s direct cost
for these depends upon insurance and litigation but the ARA should take deaths into
account.

For this example, the analysis assumes that if an attack is successfully repelled
(S = 0), then no lives are lost. But in a successful attack (S= 1), the analysis assumes
that all armed guards are killed and, depending on the chosen response at the node
D2 , there may be additional fatalities: (1) if the Owner does not ransom the ship,
the angry Pirates kill four of the crew; (2) if the Owner pays the ransom, no one
else dies; (3) if the hijacked ship is rescued by the Navy, there are two more deaths.
A slightly more complex analysis would properly treat the number of deaths and
their costs as random variables, but this discussion omits that and follows Martinez
and Mendez (2009) in fixing the statistical value of a (Spanish) life at e2.04M. In
similar simplification, we assume the depreciated value of the ship and its cargo is
e7M.

Table 4.2 summarizes the costs cD for the Owner that are associated with each
scenario (i.e., each path in the tree shown in Figure 4.5). Clearly, if there is no attack,
then S = 0.

Table 4.2 The Owner’s costs associated with different tree paths.

D1 S D2 Ship loss Action costs Lives lost cD

do nothing S = 1 don’t pay 1 0 + 0 0 + 4 15.16
do nothing S = 1 pay ransom 0 0 + 2.3M 0 + 0 2.30
do nothing S = 1 call Navy 0 0 + 0.2M 0 + 2 4.28
do nothing S = 0 0 0 0 0.00
hire guard S = 1 don’t pay 1 0.05M + 0 1 + 4 17.25
hire guard S = 1 pay ransom 0 0.05M + 2.3M 1 + 0 4.39
hire guare S = 1 call Navy 0 0.05M + 0.2M 1 + 2 6.37
hire guard S = 0 0 0.05M 0 0.05
hire team S = 1 don’t pay 1 0.15M + 0 2 + 4 19.39
hire team S = 1 pay ransom 0 0.15M + 2.3M 2 + 0 6.53
hire team S = 1 call Navy 0 0.15M + 0.2M 2 + 2 8.51
hire team S = 0 0 0.15M 0 0.15
d3

1 (alternative route) 0 0.5M 0 0.50

If the Owner has constant absolute risk aversion, then her utility function has the
form uD(cD) = 1−exp(−α×cD), with α > 0 (see Section 2.2.1). Constant risk aver-
sion implies that when choosing between a guaranteed payment and a gamble, her
choice is the same for any constant multiple of both the payment and the expected
value of the gamble. As a sensitivity analysis, this ARA considers her optimal deci-
sion for α ∈ {0.1,0.4,1,2,5}.

Based on historical information (Carney, 2009), the ARA assumes that the Owner
believes that an attack will be successful when no armed guards are hired is 0.4, or
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• This case study made many assumptions and a sensitivity analysis can show their
impact

• First, recall that the Owner has a constant level of risk aversion, with utility function
of the form uD(cD) = − exp(c× cD), for c > 0

• Then, if there are nine ships that may be targeted by Pirates, the Owner’s maximum
expected utility choice will be:

– hire one armed guard for c = 0.1 and c = 0.4

– hire two armed guards for c = 1 and c = 2

– take the Cape of Good Hope route for c = 5

• In the first two cases, if hijacked, she should then pay the ransom
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• To also explore the sensitivity of the Owner’s optimal decision to assumptions about
(a) the probability that an attack is successful given the initial defense decision, (b)
the number of nearby ships that could be targeted, and (c) the probability of an
attempted attack given the initial defense decision, consider the next tables, showing
the Owner’s optimal initial and secondary decisions

• If hijacked, it is always best for the Owner to pay the ransom

• As the number of ships increases, risk diminishes and less aggressive initial choices
are made

• Similarly, as the estimates of attack probabilities diminish, or as the probability of
successful attack diminishes, the Owner should choose less expensive initial
defenses
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the Owner’s optimal initial and secondary decisions. If hijacked, it is always best
for the Owner to pay the ransom. And, as the number of ships increases, risk di-
minishes and less aggressive initial choices are made. Similarly, as the estimates of
attack probabilities diminish, or as the probability of successful attack diminishes,
the Owner should choose less expensive initial defenses.

Table 4.4 A sensitivity analysis of the decision theory in the Somali pirates case study. Factors
considered are different levels of risk aversion, different probabilities for successful attack, different
numbers of nearby ships, and different probabilities of a successful attack given the initial decision.

pD(S = 1|a1,d1) p̂D(A = a1|d1)

d1
1 d2

1 n d0
1 d1

1 d2
1 c d∗1 d∗2(d

∗
1 )

0.2 0.1 5 0.41010 0.18354 0.00382 0.1 – 1 d2
1 (team) d1

2 (pay)
2 – 5 d3

1 (GH route)
9 0.27260 0.05780 0.00008 0.1 d1

1 (man) d1
2 (pay)

0.4 – 1 d2
1 (team) d1

2 (pay)
2 – 5 d3

1 (GH route)
15 0.18322 0.01622 0.00000 0.1 – 0.4 d1

1 (man) d1
2 (pay)

1 – 5 d2
1 (team) d1

2 (pay)
20 0.14230 0.00628 0.00000 0.1 – 1 d1

1 (man) d1
2 (pay)

2 – 5 d2
1 (team) d1

2 (pay)

0.10 0.05 5 0.46564 0.12166 0.00328 0.1 d1
1 (man) d1

2 (pay)
0.4 – 1 d2

1 (team) d1
2 (pay)

2 – 5 d3
1 (GH route)

9 0.30332 0.02560 0.00004 0.1 – 0.4 d1
1 (man) d1

2 (pay)
1 – 2 d2

1 (team) d1
2 (pay)

5 d3
1 (GH route)

15 0.19386 0.00392 0.00000 0.1 – 1 d1
1 (man) d1

2 (pay)
2 – 5 d2

1 (team) d1
2 (pay)

20 0.14836 0.00098 0.00000 0.1 – 1 d1
1 (man) d1

2 (pay)
2 – 5 d2

1 (team) d1
2 (pay)

0.05 0.025 5 0.49010 0.09372 0.00374 0.1 d1
1 (man) d1

2 (pay)
0.4 – 1 d2

1 (team) d1
2 (pay)

2 – 5 d3
1 (GH route)

9 0.31764 0.01596 0.00002 0.1 – 0.4 d1
1 (man) d1

2 (pay)
1 – 2 d2

1 (team) d1
2 (pay)

5 d3
1 (GH route)

15 0.19842 0.00142 0.00000 0.1 – 1 d1
1 (man) d1

2 (pay)
2 – 5 d2

1 (team) d1
2 (pay)

20 0.14778 0.00024 0.00000 0.1 – 1 d1
1 (man) d1

2 (pay)
2 – 5 d2

1 (team) d1
2 (pay)
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the Owner’s optimal initial and secondary decisions. If hijacked, it is always best
for the Owner to pay the ransom. And, as the number of ships increases, risk di-
minishes and less aggressive initial choices are made. Similarly, as the estimates of
attack probabilities diminish, or as the probability of successful attack diminishes,
the Owner should choose less expensive initial defenses.

Table 4.4 A sensitivity analysis of the decision theory in the Somali pirates case study. Factors
considered are different levels of risk aversion, different probabilities for successful attack, different
numbers of nearby ships, and different probabilities of a successful attack given the initial decision.

pD(S = 1|a1,d1) p̂D(A = a1|d1)

d1
1 d2

1 n d0
1 d1

1 d2
1 c d∗1 d∗2(d

∗
1 )

0.2 0.1 5 0.41010 0.18354 0.00382 0.1 – 1 d2
1 (team) d1

2 (pay)
2 – 5 d3

1 (GH route)
9 0.27260 0.05780 0.00008 0.1 d1

1 (man) d1
2 (pay)

0.4 – 1 d2
1 (team) d1

2 (pay)
2 – 5 d3

1 (GH route)
15 0.18322 0.01622 0.00000 0.1 – 0.4 d1

1 (man) d1
2 (pay)

1 – 5 d2
1 (team) d1

2 (pay)
20 0.14230 0.00628 0.00000 0.1 – 1 d1

1 (man) d1
2 (pay)

2 – 5 d2
1 (team) d1

2 (pay)

0.10 0.05 5 0.46564 0.12166 0.00328 0.1 d1
1 (man) d1

2 (pay)
0.4 – 1 d2

1 (team) d1
2 (pay)

2 – 5 d3
1 (GH route)

9 0.30332 0.02560 0.00004 0.1 – 0.4 d1
1 (man) d1

2 (pay)
1 – 2 d2

1 (team) d1
2 (pay)

5 d3
1 (GH route)

15 0.19386 0.00392 0.00000 0.1 – 1 d1
1 (man) d1

2 (pay)
2 – 5 d2

1 (team) d1
2 (pay)

20 0.14836 0.00098 0.00000 0.1 – 1 d1
1 (man) d1

2 (pay)
2 – 5 d2

1 (team) d1
2 (pay)

0.05 0.025 5 0.49010 0.09372 0.00374 0.1 d1
1 (man) d1

2 (pay)
0.4 – 1 d2

1 (team) d1
2 (pay)

2 – 5 d3
1 (GH route)

9 0.31764 0.01596 0.00002 0.1 – 0.4 d1
1 (man) d1

2 (pay)
1 – 2 d2

1 (team) d1
2 (pay)

5 d3
1 (GH route)

15 0.19842 0.00142 0.00000 0.1 – 1 d1
1 (man) d1

2 (pay)
2 – 5 d2

1 (team) d1
2 (pay)

20 0.14778 0.00024 0.00000 0.1 – 1 d1
1 (man) d1

2 (pay)
2 – 5 d2

1 (team) d1
2 (pay)
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the Owner’s optimal initial and secondary decisions. If hijacked, it is always best
for the Owner to pay the ransom. And, as the number of ships increases, risk di-
minishes and less aggressive initial choices are made. Similarly, as the estimates of
attack probabilities diminish, or as the probability of successful attack diminishes,
the Owner should choose less expensive initial defenses.

Table 4.4 A sensitivity analysis of the decision theory in the Somali pirates case study. Factors
considered are different levels of risk aversion, different probabilities for successful attack, different
numbers of nearby ships, and different probabilities of a successful attack given the initial decision.

pD(S = 1|a1,d1) p̂D(A = a1|d1)

d1
1 d2

1 n d0
1 d1

1 d2
1 c d∗1 d∗2(d

∗
1 )

0.2 0.1 5 0.41010 0.18354 0.00382 0.1 – 1 d2
1 (team) d1

2 (pay)
2 – 5 d3

1 (GH route)
9 0.27260 0.05780 0.00008 0.1 d1

1 (man) d1
2 (pay)

0.4 – 1 d2
1 (team) d1

2 (pay)
2 – 5 d3

1 (GH route)
15 0.18322 0.01622 0.00000 0.1 – 0.4 d1

1 (man) d1
2 (pay)

1 – 5 d2
1 (team) d1

2 (pay)
20 0.14230 0.00628 0.00000 0.1 – 1 d1

1 (man) d1
2 (pay)

2 – 5 d2
1 (team) d1

2 (pay)

0.10 0.05 5 0.46564 0.12166 0.00328 0.1 d1
1 (man) d1

2 (pay)
0.4 – 1 d2

1 (team) d1
2 (pay)

2 – 5 d3
1 (GH route)

9 0.30332 0.02560 0.00004 0.1 – 0.4 d1
1 (man) d1

2 (pay)
1 – 2 d2

1 (team) d1
2 (pay)

5 d3
1 (GH route)

15 0.19386 0.00392 0.00000 0.1 – 1 d1
1 (man) d1

2 (pay)
2 – 5 d2

1 (team) d1
2 (pay)

20 0.14836 0.00098 0.00000 0.1 – 1 d1
1 (man) d1

2 (pay)
2 – 5 d2

1 (team) d1
2 (pay)

0.05 0.025 5 0.49010 0.09372 0.00374 0.1 d1
1 (man) d1

2 (pay)
0.4 – 1 d2

1 (team) d1
2 (pay)

2 – 5 d3
1 (GH route)

9 0.31764 0.01596 0.00002 0.1 – 0.4 d1
1 (man) d1

2 (pay)
1 – 2 d2

1 (team) d1
2 (pay)

5 d3
1 (GH route)

15 0.19842 0.00142 0.00000 0.1 – 1 d1
1 (man) d1

2 (pay)
2 – 5 d2

1 (team) d1
2 (pay)

20 0.14778 0.00024 0.00000 0.1 – 1 d1
1 (man) d1

2 (pay)
2 – 5 d2

1 (team) d1
2 (pay)
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the Owner’s optimal initial and secondary decisions. If hijacked, it is always best
for the Owner to pay the ransom. And, as the number of ships increases, risk di-
minishes and less aggressive initial choices are made. Similarly, as the estimates of
attack probabilities diminish, or as the probability of successful attack diminishes,
the Owner should choose less expensive initial defenses.

Table 4.4 A sensitivity analysis of the decision theory in the Somali pirates case study. Factors
considered are different levels of risk aversion, different probabilities for successful attack, different
numbers of nearby ships, and different probabilities of a successful attack given the initial decision.

pD(S = 1|a1,d1) p̂D(A = a1|d1)

d1
1 d2

1 n d0
1 d1

1 d2
1 c d∗1 d∗2(d

∗
1 )

0.2 0.1 5 0.41010 0.18354 0.00382 0.1 – 1 d2
1 (team) d1

2 (pay)
2 – 5 d3

1 (GH route)
9 0.27260 0.05780 0.00008 0.1 d1

1 (man) d1
2 (pay)

0.4 – 1 d2
1 (team) d1

2 (pay)
2 – 5 d3

1 (GH route)
15 0.18322 0.01622 0.00000 0.1 – 0.4 d1

1 (man) d1
2 (pay)

1 – 5 d2
1 (team) d1

2 (pay)
20 0.14230 0.00628 0.00000 0.1 – 1 d1

1 (man) d1
2 (pay)

2 – 5 d2
1 (team) d1

2 (pay)

0.10 0.05 5 0.46564 0.12166 0.00328 0.1 d1
1 (man) d1

2 (pay)
0.4 – 1 d2

1 (team) d1
2 (pay)

2 – 5 d3
1 (GH route)

9 0.30332 0.02560 0.00004 0.1 – 0.4 d1
1 (man) d1

2 (pay)
1 – 2 d2

1 (team) d1
2 (pay)

5 d3
1 (GH route)

15 0.19386 0.00392 0.00000 0.1 – 1 d1
1 (man) d1

2 (pay)
2 – 5 d2

1 (team) d1
2 (pay)

20 0.14836 0.00098 0.00000 0.1 – 1 d1
1 (man) d1

2 (pay)
2 – 5 d2

1 (team) d1
2 (pay)

0.05 0.025 5 0.49010 0.09372 0.00374 0.1 d1
1 (man) d1

2 (pay)
0.4 – 1 d2

1 (team) d1
2 (pay)

2 – 5 d3
1 (GH route)

9 0.31764 0.01596 0.00002 0.1 – 0.4 d1
1 (man) d1

2 (pay)
1 – 2 d2

1 (team) d1
2 (pay)

5 d3
1 (GH route)

15 0.19842 0.00142 0.00000 0.1 – 1 d1
1 (man) d1

2 (pay)
2 – 5 d2

1 (team) d1
2 (pay)

20 0.14778 0.00024 0.00000 0.1 – 1 d1
1 (man) d1

2 (pay)
2 – 5 d2

1 (team) d1
2 (pay)

62


