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Abstract

In this paper we discuss issues related to uncertainty in input data in a relevant health care
management problem, the nurse-to-patient assignment problem under continuity of care in home
care services, in which patient demands are uncertain parameters and continuity of care is
pursued. We consider two variants of the problem: the first variant aims at minimizing the
overtime cost, and the second variant aims at obtaining a fair workload among nurses. In the
first variant different possible levels of demand are taken into account. In the second variant we
investigate the behavior of different objective functions in ensuring a fair workload. We present
cardinality-constrained robust formulations for both problems. For the maximum fairness case,
some results on a toy instance are given.
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1. Introduction

Randomness in data and parameters is a common feature of several optimization problems, and
arises in many applications, spreading from telecommunications, where uncertainty is usually
associated to traffic demands, to health care, where uncertainty is related to patients’ condi-
tions. Indeed, uncertainty is inherent in many health care optimization problems and cannot
be neglected, as it may have a significant impact on the problem solution. In locating emer-
gency vehicles, uncertainty is associated to the availability of ambulances (probabilistic models
for the ambulance location problem are reported in [6]), whereas uncertainty is related to the
duration of surgery in planning and scheduling operating room theaters (see [13]). Uncertainty
also occurs in managing Home Care (HC) services. HC services consist of providing cares to
patients at their domicile rather than in hospital. It allows both to reduce hospitalization costs
and to improve patients’ quality of life. Managing human resources in HC services is a difficult
task, which is made even more complex by uncertain patients’ demands. HC providers must
synchronize the use of the resources at the patient’s domicile, while usually delivering the ser-
vice to a large number of patients in a vast territory. Furthermore, random events affect the
service delivery, undermine the feasibility of plans, and cause a high variability in the work-
load charged to nurses and, consequently, in the cost of the service provided. One of the most
critical and frequent of such events is a sudden variation in the amount of service required by
patients, which is in general highly variable. In addition, several providers pursue the continuity
of care. This means that the HC provider assigns only one nurse to each patient, the reference

nurse, and the assignment is kept for a long period. Continuity is an important quality indi-
cator of the provided service, because the patient receives care from the same nurse instead of
continuously developing new relationships, and potential loss of information among operators is
avoided. However, continuity of care constraint limits the flexibility of the service; thus, for a
good trade-off between quality and flexibility, continuity of care should be preserved at least for
critical patients or patients with particular needs.

In this paper, we focus on the nurse-to-patient assignment problem under continuity of care,
which requires assigning each newly admitted patient to his/her reference nurse, under the ap-
propriate continuity of care requirement. Different approaches have been applied to solve the
problem while taking into account patients’ demand variability. Among the others, this assign-
ment problem has been solved applying the cardinality-constrained approach [9]. Such approach
provides good quality solutions in a reasonable computational time, showing to be an effective
tool for the considered problem. However, some improvements are possible and in this report
we propose two different directions of improvement.

The report is structured as follows. A literature review of the problems that arise in planning
HC services is reported in Section 2, while the description of the problem addressed in this
paper is given in Section 3. The directions of improvement are then presented in Section 4,
and detailed in Sections 5 and 6, respectively. Final discussions and conclusion are reported in
Section 7.

2. State of the art

HC management involves several resources and must take into account many requirements and
constraints. It is related to nurse rostering in hospitals (see [11, 7]) as it deals with nurse man-



4.

agement. However, HC management involves several issues which are not usually addressed in
nurse rostering problems, such as the continuity of care [14] or the burnout risk [5], which make
the HC nurse management peculiar. The main issues to be considered in HC resource planning
are the partitioning of a territory into a given number of districts, the dimensioning of human
resources, the assignment of visits to operators (or patients to operators in the case of continuity
of care), the scheduling of nurses’ duties and the routing optimization. Literature papers about
HC can be mainly divided into two groups: a first group dealing with daily schedule of visits
and routing of nurses, and a second group dealing with staff planning and management in a
mid-term and long-term perspective. From a long-term point of view, the districting problem
consists of grouping patients and nurses according to geographical and skill compatibility [3, 18].
The dimensioning of human resources consists of determining the number of operators, together
with their skills, to meet patients’ demand in each district. Uncertainty in the demands may be
taken into account [12], and funding is to be taken into account in dimensioning HC resources,
as well [8].

The nurse-to-patient assignment problem under continuity of care is part of the mid-term man-
agement. The uncertainty in patients’ demands can be considered in assigning the visits. Ac-
cording to the continuity of care, patients (and not single visits) are assigned to nurses, and
each patient is assigned to the same nurse for the whole length of the treatment. Thus, the
problem consists of assigning nurses to patients in a fair way. It has been rarely studied as a
stand alone problem, i.e., not considering the scheduling [4], and, to the best of our knowledge,
the assignment problem taking into account the continuity of care issue is only marginally ad-
dressed in the literature [5, 15, 19, 20]. Besides, continuity of care is often considered as an
objective rather than a strict requirement and, therefore, dealt with as a soft-constraint rather
than as a hard one (see for instance [24]). If continuity of care is not considered, the assignment
problem turns out to be an assignment of operators to visits, with the aim of jointly optimizing
the assignment of operators to visits and the scheduling and routing problem (see [26, 25]).
As mentioned, uncertainty inherently arises in HC due to unpredictable changes in patients’
needs. It affects the personnel workload and the number of patients who can be treated. Dif-
ferent approaches are usually applied to deal with uncertainty in health care problems, such
as probabilistic models or stochastic optimization approaches. However, the nurse-to-patients
assignment problem in which both continuity of care and demand uncertainty are considered
has been rarely addressed in the literature. In [17] uncertainty is managed by representing the
whole system as a Markov chain and developing admittance policies for patients. The problem
was tackled with the stochastic programming on one side [20], and with analytical policies on
the other [19]. However, both these approaches proved to be limited, even if they improved the
quality of the assignment upon those provided by the HC structures in the practice. Indeed, the
stochastic programming approach is based on scenario generation and, due to the high number
of patients and the associated demand variability, should include a very high number of sce-
narios. Only a limited number of them can be consequently considered for a computationally
feasible solution and, therefore, a high expected value of perfect information (EVPI) and a low
value of the stochastic solution (VSS) are obtained [20]. The analytical policies are related to
strict assumptions regarding the shape of workload probability density functions, the number of
assignable patients (one patient at a time after deciding an ordering of new patients) and the
number of periods in the planning horizon, which is equal to one [19].

Recently, the cardinality-constrained model has been applied for solving the nurse-to-patient as-
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signment problem under continuity of care in HC [9]. This is an innovative robust optimization
approach, which has been proposed in [2] and has been already applied in several fields, spread-
ing from portfolio optimization to telecommunication network design. The approach allows to
account for a certain degree of uncertainty with a reasonable computational effort, providing a
trade-off between computational time and robustness. In addition, it can be tuned to take into
account the specific degree of risk the decision maker accepts. Although the approach seems
to fit well to many health care problems, and in particular to the HC planning, to the best of
our knowledge it has not be applied to many health care problems until now. Besides [9], there
are the only five papers (i.e., [1, 13, 16, 10, 22]) found in September 2013 through a search on
ISI Web of Knowledge and Scopus among the papers citing [2] and referring to Health Care.
However, none deals with HC management.

3. Problem description

The nurse-to-patient assignment problem consists of assigning a set of HC patients P to a set of
nurses I over a time horizon T represented by a set of time slots t. Continuity of care is taken
into account; indeed, different continuity of care requirements are considered, depending on the
type of patient and on his/her requests. Hence, the set of patients P is partitioned into five
subsets:

1. Patients who require hard continuity of care (C)

P a
c : set of patients who require hard continuity of care – i.e., their reference nurse cannot

be changed – and are already under treatment (and therefore assigned) at the be-
ginning of the time horizon. As they cannot be reassigned, they keep their reference
nurse.

Pn
c : set of patients who require hard continuity of care and start their treatment during

the time horizon (therefore, they are not yet assigned).

2. Patients who require partial continuity of care (PC)

P a
pc: set of patients who require partial continuity of care – i.e., their reference nurse can

be changed although it is preferable not to – and are already under treatment (and
therefore assigned) at the beginning of the time horizon.

Pn
pc: set of patients who require partial continuity of care and start their treatment during

the time horizon (therefore, they are not yet assigned). Similarly to patients in P a
pc,

they can be reassigned at the beginning of each time slot t with a reassignment cost
γ.

3. Patients who do not require continuity of care (NC)

Pnc: set of patients who do not require continuity of care. They can be assigned to more
than one nurse even in the same time slot t and the assignments can be changed from
a time slot to another without reassignment costs.

The division in districts (usually based on territory and skills) is taken into account, i.e., each
district is assigned to a subset of nurses. A parameter mij is given for each nurse i ∈ I and
patient j ∈ P , which is equal to 1 if i operates in the district of j, and 0 otherwise. The amount
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of working time required by each patient j ∈ P during each time slot t ∈ T is an uncertain
parameter rjt. Each nurse i ∈ I has an amount of available working time vi in each time slot
t. If the workload amount of a nurse exceeds the available time, the overtime must be paid to
the nurse with a cost that varies according to the overtime amount. A limit is also given to the
total workload amount of each nurse i ∈ I, which cannot exceeds twice the value of vi. The
formulation of the problem developed in [9] is described in Section 3.1.

3.1. Cardinality-constrained formulation for cost reduction

The objective aims at minimizing a sum of nurses’ overtimes cost and reassignments penalties
of patients with partial continuity of care. For describing the overtime costs, a set of overtime
levels Li is defined for each nurse i ∈ I and two parameters are given for each level l ∈ Li: a
threshold ∆l

i and a cost per time unit cl (cl is the cost for each overtime unit above vi+
∑l−1

k=1∆
k
i

and below vi +
∑l

k=1∆
k
i ). Costs cl are such that cl < cl+1 to get a monotonically increasing

stepwise function. For the minimization of the reassignments, a binary variable ytj is introduced
for each patient j ∈ P a

pc ∪ Pn
pc: y

t
j is equal to 1 if the assignment of j is changed from t− 1 to t,

and 0 otherwise. The following decision variables are used to model the assignments. A binary
variable xji is defined for each patient j ∈ P a

c ∪Pn
c and each nurse i ∈ I: xji is equal to 1 if j is

assigned to i during the whole time horizon, and 0 otherwise. A binary variable ξtji is defined for
each patient j ∈ P a

pc∪Pn
pc who requires partial continuity of care, each nurse i ∈ I and each time

slot t ∈ T : ξtji is equal to 1 if i is in charge of j during t, and 0 otherwise. The assignments of
patients to reference nurses before the beginning of the considered time horizon are described by
parameters x̃ji for each patient j ∈ P a

c ∪P a
pc and each nurse i ∈ I: x̃ji is equal to 1 if j is initially

assigned to i, and 0 otherwise. The fraction of the time needed by patient j ∈ Pnc during time
slot t ∈ T , which is provided by nurse i ∈ I, is represented by a continuous variable χt

ji ∈ [0, 1].
The overtime amount assigned to each nurse i ∈ I during each time slot t ∈ T is described by
a continuous variable wl

it for each level l ∈ Li, which represents the overtime related to cost cl.
The model is thus written as follows [9]:

min




∑

i∈I

∑

t∈T

∑

l∈Li

clw
l
it + γ

∑

j∈P a
pc∪P

n
pc

∑

t∈T

ytj



 . (1)

s.t.
∑

i∈I

mijxji = 1, ∀j ∈ P a
c ∪ Pn

c (2)

∑

i∈I

mijξ
t
ji = 1, ∀j ∈ P a

pc ∪ Pn
pc, t ∈ T (3)

∑

i∈I

mijχ
t
ji = 1, ∀j ∈ Pnc, t ∈ T (4)

∑

j∈P a
c ∪P

n
c

rjtxji +
∑

j∈P a
pc∪P

n
pc

rjtξ
t
ji +

+
∑

j∈Pnc

rjtχ
t
ji ≤ vi +

∑

l∈Li

wl
it, ∀i ∈ I, t ∈ T (5)

0 ≤ wl
it ≤ ∆l

i, ∀i ∈ I, t ∈ T, l ∈ Li (6)

xji ≥ x̃ji, ∀i ∈ I, j ∈ P a
c (7)
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ytj ≥ ξtji − ξt−1
ji , ∀t ∈ T \ {t1}, j ∈ P a

pc ∪ Pn
pc, i ∈ I (8)

yt1j ≥ ξt1ji − x̃ji, ∀j ∈ P a
pc, i ∈ I (9)

xji ∈ {0, 1}, ∀j ∈ P a
c ∪ Pn

c , i ∈ I (10)

ξtji ∈ {0, 1}, ∀j ∈ P a
pc ∪ Pn

pc, t ∈ T, i ∈ I (11)

χt
ji ∈ [0, 1], ∀j ∈ Pnc, t ∈ T, i ∈ I (12)

ytj ∈ {0, 1}, ∀j ∈ Pnc, t ∈ T (13)

Constraints (2)–(4) guarantee that each patient is assigned to a suitable nurse, taking into ac-
count the district compatibility and the pertinent continuity of care requirement. Constraints
(5) compute the nurse workload (left hand side) and the overtime, which is divided into the dif-
ferent cost levels (right hand side). Constraints (6) set the thresholds for the overtime workload
of each level. Constraints (7) guarantee that patients belonging to the subset P a

c do not change
their assignment at the beginning of the considered time horizon. Finally, constraints (8) and
(9) compute the number of reassignments. In particular, constraints (9) compute the number of
reassignments at the initial time slot t1 for patients in the subset P a

pc. The robustness is inserted
in this formulation according to the standard cardinality- constrained approach [2].

• The stochastic amount of working time rjt is modeled considering an expected value r̄jt
and a maximum value r̄jt + r̂jt.

• Three sets Sit
c , S

it
pc and Sit

nc are introduced for each nurse i ∈ I and each time slot t ∈ T .
Sit
c ⊆ P a

c ∪ Pn
c is the subset of patients requiring hard continuity of care and assigned to

i, whose demand charged to nurse i in time slot t is equal to the maximum treatment
time (i.e., r̄jt + r̂jt). Sit

pc ⊆ P a
pc ∪ Pn

pc and Sit
nc ⊆ Pnc are analogously defined for patients

requiring partial and no continuity of care, respectively.

• Three cardinality parameters Γi
c, Γ

i
pc and Γi

nc are introduced for each nurse i ∈ I. At
most ⌊Γi

c⌋ and ⌊Γi
pc⌋ and ⌊Γi

nc⌋ patients (with hard, partial and no continuity of care) are
assumed to belong to these subsets, respectively.

• Further, in case Γi
c and Γi

pc and Γi
nc are not integer, three patients are selected for each

nurse i and each time slot t, whose demand charged to i is between r̄jt and r̄jt + r̂jt. We
denote pitc , p

it
pc and pitnc such patients: pitc is a patient belonging to P a

c ∪Pn
c but not to Sit

c ,
pitpc is a patient belonging to P a

pc∪Pn
pc but not to Sit

pc, and pitnc is a patient belonging to Pnc

but not to Sit
nc.

• The charged demand of the other patients not belonging to Sit
c , S

it
pc and Sit

nc and different
from pitc , p

it
pc and pitnc is the expected treatment time (i.e., r̄jt).

The robustness is taken into account considering the worst possible charge for each nurse i in
each time slot t, given cardinalities Γi

c, Γ
i
pc and Γi

nc. Hence, the model is modified in order to
include such worst case in constraints (5):

∑

j∈P a
c ∪P

n
c

r̄jtxji +
∑

j∈P a
pc∪P

n
pc

r̄jtξ
t
ji +

∑

j∈Pnc

r̄jtχ
t
ji +

+ max
Sit
c ∪{pitc }|Sit

c ⊆Pa
c ∪Pn

c ,

|Sit
c |=⌊Γi

c⌋, p
it
c ∈P a

c ∪P
n
c \Sit

c





∑

j∈Sit
c

r̂jtxji +
(
Γi
c − ⌊Γi

c⌋
)
r̂pitc txpitc i



+
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+ max
Sit
pc∪{pitpc}|

Sit
pc⊆Pa

pc∪Pn
pc,|S

it
pc|=⌊Γi

pc⌋,

pitpc∈P
a
pc∪P

n
pc\S

it
pc





∑

j∈Sit
pc

r̂jtξ
t
ji +

(
Γi
pc − ⌊Γi

pc⌋
)
r̂pitpctξ

t
pitpci



+ (14)

+ max
Sit
nc∪{pitnc}|S

it
nc⊆Pnc,

|Sit
nc|=⌊Γi

nc⌋, p
it
nc∈Pnc\Sit

nc





∑

j∈Sit
nc

r̂jtχ
t
ji +

(
Γi
nc − ⌊Γi

nc⌋
)
r̂pitnct

χt
pitnci



 ≤

≤ vi +
∑

l∈Li

wl
it, ∀i ∈ I, t ∈ T

Let us denote with βit
c (x

∗,Γi
c, t), β

it
pc(ξ

∗,Γi
pc, t) and βit

nc(χ
∗,Γi

nc, t) the three maxima included in
(14), which are related to a given solution {x∗, ξ∗, χ∗}. As example, βit

c (x
∗,Γi

c, t) is expressed as
follows:

βit
c (x

∗,Γi
c, t) = max

Sit
c ∪{pitc }|Sit

c ⊆Pa
c ∪Pn

c ,

|Sit
c |=⌊Γi

c⌋, p
it
c ∈P a

c ∪Pn
c \Sit

c





∑

j∈Sit
c

r̂jtx
∗
ji +

(
Γi
c − ⌊Γi

c⌋
)
r̂pitc tx

∗
pitc i



 (15)

This is computed for each nurse i ∈ I and each time slot t ∈ T by solving the following linear
programming problem:

(Pβit
c ) = max

∑

j∈P a
c ∪P

n
c

r̂jtx
∗
jiz

t
ji (16)

∑

j∈P a
c ∪P

n
c

ztji ≤ Γi
c (17)

0 ≤ ztji ≤ 1, ∀j ∈ P a
c ∪ Pn

c (18)

where i and t are fixed, and ztji ∈ [0, 1] are continuous variables which represent the choice of the

elements in subset Sit
c and the choice of pitc .

1 Let us denote with ζcit the dual variables associated
to (17) and with πc

jit the dual variables associated to ztji ≤ 1 (18). The dual problem is written
as:

(Dβit
c ) = min Γi

cζ
c
it +

∑

j∈P a
c ∪P

n
c

πc
jit (19)

ζcit + πc
jit ≥ r̂jtx

∗
ji, ∀j ∈ P a

c ∪ Pn
c (20)

πc
jit ≥ 0, ∀j ∈ P a

c ∪ Pn
c (21)

ζcit ≥ 0 (22)

Optimal values (Pβit
c ) and (Dβit

c ) coincide and, therefore, the fourth addend of the left hand side
of (14) can be replaced by Γi

cζ
c
it +

∑
j∈P a

c ∪P
n
c
πc
jit with the following variables and constraints

added to the model:

ζcit + πc
jit ≥ r̂jtxji, ∀i ∈ I, j ∈ P a

c ∪ Pn
c , t ∈ T

ζcit ≥ 0, ∀i ∈ I, t ∈ T

1Due to the structure of the model, which aims at considering the worst case, at most one of variables z
t
ji is

fractional in any optimal solution, if Γi
c is not integer, and represents pitc .
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πc
jit ≥ 0, ∀i ∈ I, j ∈ P a

c ∪ Pn
c , t ∈ T

The same idea is applied to βit
pc(ξ

∗,Γi
pc, t) and βit

nc(χ
∗,Γi

nc, t). The overall robust model guaran-
tees that the optimal solution is feasible for any three subsets of patients with cardinality Γi

c, Γ
i
pc

and Γi
nc. As also the worst subset is considered among all of the possible subsets, the solution

can face the worst scenario.

4. The contribution

In this report, we extend the above mentioned model in two directions:

1. Multilevel Model

The standard formulation of the cardinality-constrained approach considers only two val-
ues of demand for each patient and each period of the planning horizon, and this may
produce a too conservative solution. In order to overcome this limitation, we propose a
new cardinality-constrained model in which several levels of demands are considered. This
model is able to produce solutions that are still robust, but less conservative, and therefore
cheaper. In this report, we formalize the new model and we describe how to obtain the
levels according to the available stochastic information on patients’ demands.

2. Fairness Model

Besides the minimization of nurses’ overtimes, another important objective pursued by
planners is to obtain a fair workload among nurses. According to this, we propose a
new objective function for the above mentioned problem, i.e., the fairness of the nurses’
utilization. In this report, we give some remarks on the interaction between the fairness
objective function and the cardinality-constrained approach, and we analyze the outcomes
of the model on a toy example.

5. Multilevel model

For the multilevel model, the cardinality-constrained approach is applied with a different theoret-
ical approach. The original approach does not aim at replicating a realistic demand distribution;
on the contrary, it creates a scenario which is likely to be worse than the real executions. Indeed,
the approach guarantees that the developed solutions are feasible even with respect to the worst
case scenario, although it is very unlikely to occur, thus providing over-conservative solutions.
On the contrary, the aim of the multilevel model is to fit the real situation and to optimize
with respect to a realistic and not too conservative scenario. Indeed, we want to best fit the
possible realizations of the demands, which are generated according to their probability density
functions. For this purpose, differently from the standard formulation in which the stochastic
demands rjt are characterized only by two values, i.e., the expected value r̄jt and the maximum
one r̄jt+ r̂jt, we introduce a finer differentiation of the demand levels. Starting from the proba-
bility density function of each rjt (which is required for solving the multilevel model), we divide
the support of the distribution in H intervals. Each interval h (with h = 1, ...,H) is comprised
between rh−1

jt and rhjt. Obviously, r0jt corresponds to the minimum value of rjt and rHjt to its

maximum one (Figure 1). Values of each level may occur with probability H−1. We remark that
no assumptions have to be introduced on the probability density functions for implementing the
division in H equally probable parts, and both continuous and discrete densities can be used.
For instance, histograms representing the frequency of different values can be used as discrete
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Figure 1: Example of division of the probability density f(rjt) in H levels.

density. Alternatively, such densities can be obtained according to specific patient stochastic
models, as the one described in [21]. The same division is adopted for all demands rjt, whereas
values rhjt depend on the specific patient demand distribution, and allow taking into account a
specific density function f(rjt) for each patient j and time slot t.

In the proposed multilevel model, we keep objective function (1). Thus, the formulation of the
model before including the robustness is the same. Indeed, the same assignment variables (i.e.,
decision variables xji, ξ

t
ji and χt

ji, and parameters x̃ji) and the same overtime model (levels Li

with workload amount wl
it and parameters ∆l

i and cl) are adopted. Also in this case, thresholds
∆l

i may be different from nurse to nurse, while costs cl are the same and cl < cl+1. Parameters ∆l
i

are defined in such a way that
∑

l∈Li
∆l

i = vi ∀i. Finally, the same reassignment binary variables
ytj are used. In this case, we deal with uncertainty by modifying the deterministic formulation
with the multilevel version of the cardinality-constrained approach [23]. We introduce H − 1
integer cardinality parameters Γit

h (with h = 2, ...,H) for each nurse i ∈ I and time slot t ∈ T ,

such that
∑H

h=2 Γ
it
h ≤ Nit, where Nit is the number of uncertain parameters in the considered

constraint. We also introduce H −1 disjoint sets Sit
h (with h = 2, ...,H) for each nurse i ∈ I and

each time slot t ∈ T . Each Sit
h is the subset of patients assigned to i, whose demand charged

to nurse i in time slot t is in interval h of the corresponding density function, i.e., comprised
between rh−1

jt and rhjt. For the sake of simplicity, it is assumed that each interval h refers to the

demand rhjt, i.e., to the right border of the interval. Cardinality is constrained similarly than

in [2], as at most Γit
h patients are assumed to belong to subset Sit

h for each i ∈ I, t ∈ T and
h = 2, ...,H. With respect to the robust model in Section 3.1, we extend the dependency over
time giving the possibility to consider a different cardinality Γit

h for each time slot t. Moreover,
we do not create separate sets for the different continuity of care requirements. We remark that,
differently from the standard cardinality-constrained approach, parameters rjt not belonging to
any subset Sit

h assume their minimum possible value r1jt and not their nominal value r̄jt. Let

Pit =
{
Sit
1 , . . . , S

it
H

}
be a partition of the patients assigned to nurse i at time slot t, with the

property that |Sit
h | = Γit

h for h = 2, . . . ,H. Let δhjt = rhjt− r1jt for each j ∈ P, t ∈ T, h = 2, . . . ,H.
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Given this configuration, non-robust constraints (5) are modified as follows.

∑

j∈P a
c ∪P

n
c

r1jtxji +
∑

j∈P a
pc∪P

n
pc

r1jtξ
t
ji +

∑

j∈Pnc

r1jtχ
t
ji +

+ max
{Sit

1
,...,Sit

H}∈Pit





H∑

h=2


 ∑

j∈Sit
h
∩(P a

c ∪Pn
c )

δhjtxji+ (23)

+
∑

j∈Sit
h
∩(P a

pc∪P
n
pc)

δhjtξ
t
ji +

∑

j∈Sit
h
∩Pnc

δhjtχ
t
ji





 ≤ vi +

∑

l∈Li

wl
it ∀i ∈ I, t ∈ T

As required by the robust approach, let us denote with βit(x∗, ξ∗, χ∗,Γit
h ) the maximum in (23),

which is associated to a given solution {x∗, ξ∗, χ∗}. It is computed through the following linear
programming model Pβit, where variables zthji are equal to 1 if patient j belongs to subset Sit

h ,
and 0 otherwise:

(Pβit) = max





H∑

h=2


 ∑

j∈(P a
c ∪P

n
c )

δhjtx
∗
jiz

th
ji+

+
∑

j∈(P a
pc∪P

n
pc)

δhjtξ
t∗
jiz

th
ji +

∑

j∈Pnc

δhjtχ
t∗
jiz

th
ji





 (24)

s.t.

∑

j∈P

zthji ≤ Γit
h , ∀h = 2, ...,H (25)

H∑

h=1

zthji = 1, ∀j ∈ P (26)

zthji ≥ 0, ∀j ∈ P, i ∈ I, h ∈ H, t ∈ T (27)

Constraints (25) guarantee that at most Γit
h patients are assigned to Sit

h and constraints (26)
ensure that each patient is assigned to at most one set. If we aim at replicating the demand
distributions of patients and generate values which refer to a possible real scenario, each Γit

h

must represent the number of the total number of patients assigned to i in interval t divided by
H:

Γit
h =

1

H




∑

j∈(P a
c ∪P

n
c )

x∗ji +
∑

j∈(P a
pc∪P

n
pc)

ξ∗tji +
∑

j∈Pnc

χt∗
ji


 ∀h = 2, ...,H (28)

However, the cardinality-constrained approach requires the linearity of Pβit to define the cor-
responding dual problem D, while the presence of x∗ji, ξ

∗t
ji and χt∗

ji in Γit
h makes the problem

nonlinear. In addition, (28) does not guarantee that Γit
k is integer. We preserve the linearity by

considering an approximate value Γ̂it
h for Γit

h . For this purpose, the terms in parentheses in (28)
are replaced by an estimation of the number of patients assigned to i, which is also maintained
constant over t. This is computed as the sum of the number of patients in P a

c ∪ P a
pc already
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assigned to i and the new possible assignments of patients in Pn
c ∪ Pn

pc ∪ Pnc. The last term
is approximated with the upper integer of the number patients in Pn

c ∪ Pn
pc ∪ Pnc, who are in

the same district of i, scaled by the available working time of i normalized with respect to the
overall available working time of the district:

Γ̂it
h =

1

H


 ∑

j∈(P a
c ∪P

a
pc)

x̃ji +




vi∑
k∈Ii

vk

∑

j∈(Pn
c ∪Pn

pc∪Pnc)

mij





 (29)

where Ii is the subset of nurses operating in the same district of i. We can now derive the dual
problem adopting variables ζit and πjit for each interval h:

(Dβit) = min




∑

j∈P

πjit +

H∑

h=2

Γ̂it
h ζ

h
it



 (30)

s.t.

ζhit + πjit ≥ δhjtx
∗
ji, ∀j ∈ (P a

c ∪ Pn
c ), h = 2, ...,H (31)

ζhit + πjit ≥ δhjtξ
t∗
ji , ∀j ∈ (P a

pc ∪ Pn
pc), h = 2, ...,H (32)

ζhit + πjit ≥ δhjtχ
t∗
ji, ∀j ∈ Pnc, h = 2, ...,H (33)

πjit ≥ 0, ∀j ∈ P (34)

ζhit ≥ 0, ∀h = 2, ...,H (35)

where ζ are the dual variables associated to (25), and π the dual variables associated to (26).
Constraints (23) are then replaced by:

∑

j∈P a
c ∪P

n
c

r1jtxji +
∑

j∈P a
pc∪P

n
pc

r1jtξ
t
ji +

∑

j∈Pnc

r1jtχ
t
ji +

+
H∑

h=2

Γit
h ζ

h
it +

∑

j∈P

πjit ≤ vi +
∑

l∈Li

wl
it,∀i ∈ I, t ∈ T (36)

and then coupled with the constraints of Dβit.

6. Fairness model

In the fairness model, we maintain the standard approach of the cardinality-constrained model,
with only two levels for the uncertain patients’ demands. Thus, the amount of working time rjt
is assumed to be an uncertain parameter described by only an expected value r̄jt and a maximum
value r̄jt + r̂jt. Variables xji, ξji, χji and yit have the same meaning and domain described in
Sections 3.1 and 5. On the contrary, to take into account the fairness, the entire workload
assigned to nurse i in time slot t is now described by a continuous variable wit, including the
possible overtime. Thus, the constraints of the deterministic non-robust model are reformulated
as follows:

∑

i∈I

mijxji = 1, ∀j ∈ P a
c ∪ Pn

c (37)
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∑

i∈I

mijξ
t
ji = 1, ∀j ∈ P a

pc ∪ Pn
pc, t ∈ T (38)

∑

i∈I

mijχ
t
ji = 1, ∀j ∈ Pnc, t ∈ T (39)

∑

j∈P a
c ∪P

n
c

rjtxji +
∑

j∈a
pc∪P

n
pc

rjtξ
t
ji +

+
∑

j∈Pnc

rjtχ
t
ji ≤ wit, ∀i ∈ I, t ∈ T (40)

0 ≤ wit ≤ 2vi, ∀i ∈ I, t ∈ T (41)

xji ≥ x̃ji, ∀i ∈ I, j ∈ P a
c (42)

ytj ≥ ξtji − ξt−1
ji , ∀t ∈ T \ {t1}, j ∈ P a

pc ∪ Pn
pc, i ∈ I (43)

yt1j ≥ ξt1ji − x̃ji, ∀j ∈ P a
pc, i ∈ I (44)

The classical cardinality-constrained formulation is applied in constraints (40), which are mod-
ified as follows:

∑

j∈P a
c ∪P

n
c

r̄jtxji + Γi
cζ

c
it +

∑

j∈P a
c ∪P

n
c

πc
jit +

∑

j∈P a
pc∪P

n
pc

r̄jtξ
t
ji + Γi

pcζ
pc
it +

+
∑

j∈P a
pc∪P

n
pc

π
pc
jit +

∑

j∈Pnc

r̄jtχ
t
ji + Γi

ncζ
nc
it +

∑

j∈Pnc

πnc
jit ≤ wit, ∀i ∈ I, t ∈ T

with:

ζcit + πc
jit ≥ r̂jtxji, ∀i ∈ I, j ∈ P a

c ∪ Pn
c , t ∈ T (45)

ζ
pc
it + π

pc
jit ≥ r̂jtξ

t
ji, ∀i ∈ I, j ∈ P a

pc ∪ Pn
pc, t ∈ T (46)

ζncit + πnc
jit ≥ r̂jtχ

t
ji, ∀i ∈ I, j ∈ Pnc, t ∈ T (47)

Two different objective functions related to fairness and overtime costs are compared. In this
analysis we neglect the cost of the reassignments. The first objective is the maximization of the
nurses’ workload fairness, whereas the second one minimizes the overall overtime costs.

Two alternative functions are proposed for the first objective. The first function simply mini-
mizes the maximum utilization of the nurses:

min z (48)

with:

z ≥
wit

vi
, ∀i ∈ I, t ∈ T (49)

However, according to this objective, two solutions with the same optimal value are equivalent
even if they provide unfair workloads for some nurses who are not the most loaded ones. The
second function overcomes this problem, since the objective is the minimization of a lexicographic
function, which takes into account the maximum utilization and the maximum difference between
highest (zmax) and lowest (zmin) nurse utilization:

min {αz + zmax − zmin} (50)
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However, this objective corresponds to the maximization of zmin, which is not compatible with
the duality required by the cardinality-constrained approach. Maximizing the values of zmin

may force the variables deriving from the dual formulation to assume a value greater than their
minimum one, and such values are not compatible with the duality properties required by the
cardinality-constrained approach. This problem is avoided computing the maximum and the
minimum utilization with respect to the expected demands, without considering the robustness.
This guarantees the proper value of variables ζcit, ζ

pc
it , ζ

nc
it , π

c
jit, π

pc
jit and πnc

jit:

zmax ≥
1

vi


 ∑

j∈P a
c ∪P

n
c

r̄jtxji +
∑

j∈P a
pc∪P

n
pc

r̄jtξ
t
ji +

∑

j∈Pnc

r̄jtχ
t
ji


 ,∀i ∈ I, t ∈ T (51)

zmin ≤
1

vi




∑

j∈P a
c ∪P

n
c

r̄jtxji +
∑

j∈P a
pc∪P

n
pc

r̄jtξ
t
ji +

∑

j∈Pnc

r̄jtχ
t
ji


 ,∀i ∈ I, t ∈ T (52)

In this case, we add the following constraints:

xji ≤ mij ∀i ∈ I, j ∈ P a
c ∪ Pn

c

ξtji ≤ mij ∀i ∈ I, j ∈ P a
pc ∪ Pn

pc, t ∈ T

χt
ji ≤ mij ∀i ∈ I, j ∈ Pnc, t ∈ T

As said above, we also consider a function that minimizes the overall overtime costs (second
objective). The set of overtime levels Li are introduced for each nurse i and a threshold ∆l

i and
a cost cl are given for each level l ∈ Li. For each nurse i and level l, the amount of overtime in
time slot t is represented by a continuous non negative variable ωl

it. Thus, the objective function
is:

min
∑

i∈I

∑

t∈T

∑

l∈Li

clω
l
it (53)

with the following constraints added to compute the overtime amount in each level:

wit ≤ vi +
∑

l∈Li

ωl
it, ∀i ∈ I, t ∈ T (54)

∑

l∈Li

ωl
it ≤ 2vi, ∀i ∈ I, t ∈ T (55)

6.1. Toy example

We consider a small test example with 3 nurses, 12 new patients requiring hard continuity of care,
12 new patients requiring partial continuity of care and 9 patients not requiring continuity of care.
We consider a time horizon of 8 weeks and we test all the proposed objective functions. We set
α = 10, when used. Minimizing the overtime costs, the optimal overtime cost is 38.84, whereas
z is equal to 1.259 and the difference between the highest and lowest utilization zmax − zmin is
0.633. Applying the first fairness objective function, the optimal value of z is equal to 1.188,
while the overtime cost rises up to 112.79. The difference between the highest and the lowest
utilization zmax − zmin is reduced, although not considered in the objective function, to 0.627.
With the second fairness objective function, we obtain an optimal value of z equal to 1.188, while
the overtime cost rises up to 120.79. The difference between the highest and the lowest utilization
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zmax−zmin, which is now considered in the objective function, is reduced and it is equal to 0.474.
Therefore, it seems useful to consider in the objective function a lexicographic combination of
maximum utilization and maximum difference. Values seem to show that overtime cost objective
function has a positive impact on fairness, while fairness objective function has not a positive
impact on overtime costs. Thus, it is worthy taking into account at least a constraint on the
overtime cost. For instance, by adding a constraint that limits the cost to be at most twice the
optimal one, we obtain the same values of z and zmax − zmin, while reducing the overtime cost
to 77.67. Further, by allowing at most an increase of 50%, the optimal solution has an overtime
cost of 58.26 and the same values of z and zmax−zmin. An allowed cost increase of 20% provides
a solution with the same z and zmax − zmin, and a further reduction of the overtime cost (equal
to 46.60). Hence, it seems that there exist several equivalent optimal solutions with the same
maximum utilization and that, by using a lexicographic objective function and suitable budget
constraints, the most preferable one can be selected.

7. Discussion and conclusions

In this paper we present two robust formulations for two variants of the nurse-to-patient as-
signment problem on home care, based on the seminal work of [9]. The first newly proposed
model incorporates information about the probability distributions of the uncertain parameters
associated to patient demands and it can help to reduce the conservatism of the produced so-
lutions. The second proposed model introduces a fairness based objective function which takes
into account nurses workload balancing. The behavior of different versions of the second model
are compared on a toy example. The proposed formulations seem promising. Future effort will
be devoted to apply the proposed formulations to real instances, to evaluate their performance
and the impact of different parameters choices.
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