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Abstract. In applications of Bayesian analysis one problem that arises is the

evaluation of the sensitivity, or robustness, of the adopted inferential procedure

with respect to the components of the formulated statistical model. In partic-

ular, it is of interest to study robustness with respect to the prior, when this

latter cannot be uniquely elicitated, but a whole class Γ of probability measures,

agreeing with the available information, can be identified. In this situation, the

analysis of robustness consists of finding the extrema of posterior functionals

under Γ. In this paper we provide a theoretical framework for the treatment

of a global robustness problem in the context of hierarchical mixture modeling,

where the mixing distribution is a random probability whose law belongs to a

generalized moment class Γ. Under suitable conditions on the functions describ-

ing the problem, the solution of this latter coincides with the solution of a linear

semi-infinite programming problem.

Key words and phrases : Bayesian robustness analysis, hierarchical mixture mod-

els, nonparametric prior, moment theory, linear semi-infinite programming.
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1. Introduction

Robustness analysis is concerned with the sensitivity of the results of the inference to

the assumptions of the adopted model. In particular, in Bayesian inference a robustness

problem arises for instance when, due to lack of information, the prior is difficult to be

elicitated.

The state of the art, up to 2000, of robustness issues in Bayesian analysis is exhibited

in the papers collected in Rios Insua and Ruggeri (2000); the opening paper by Berger et

al. (2000) presents an overview of the robust Bayesian approach, which usually includes

the global robustness approach, where the class of all priors coherent with the elicited

prior information is considered, and the local robustness approach, where the interest is

in the rate of change in inferences with respect to small changes in the prior.

When considering global robustness (in short, robustness henceforth), the analysis

usually can be expressed as follows

sup
π∈Γ

∫
Θ g(θ)l(θ)π(dθ)∫

Θ l(θ)π(dθ)
− inf

π∈Γ

∫
Θ g(θ)l(θ)π(dθ)∫

Θ l(θ)π(dθ)

where g : Θ → IR is some function of interest, l(θ) is the likelihood function, Θ is the

parameter space and π is the prior distribution which is assumed to belong to a class Γ of

probability distributions. Of course, without loss of generality, the analysis can be focused

on the supremum. In this framework, the possibility of providing effective algorithms for

the analysis of robustness is available in the case of classes of priors defined by generalized

moment conditions, since here the problem of analyzing Bayesian robustness is reduced

to a problem of Linear Semi-Infinite Programming.

Generalized moment classes have been considered in connection with robustness

first by Betrò et al. (1994) and then by Betrò and Guglielmi (1994), Goutis (1994),
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Dall’Aglio (1995), Smith (1995), Betrò et al. (1996), Betrò and Guglielmi (1997, 2000).

Such classes incorporate a number of interesting situations – the most common being the

one in which bounds on quantiles of the prior distribution are available – and have been

widely studied in other contexts. Consequently, a rather comprehensive theory exists for

optimization of linear functionals defined over them, mainly due to Kemperman (1971,

1983, 1987). In robustness analysis, the functional to be optimized is not linear but, as

first noticed in Betrò and Guglielmi (1994), it is possible to obtain linearity by a suitable

transformation, so that the above theory can be applied, as extensively studied in Betrò

and Guglielmi (2000). We remark that, as shown in Hoff (2003), probability measures

belonging to a generalized moment class can be represented as convex combinations of

extremal probability measures. This property can be exploited as an alternative way for

solving the robustness problem, as in Betrò et al. (1994); however, the corresponding

optimization problem turns out to be a global nonlinear one, and its numerical solution

seems more difficult to be obtained.

The aim of this paper is to provide a theoretical framework for the treatment of a

global robustness problem within nonparametric hierarchical mixture modeling. By their

flexibility, combined with the development of suitable sample techniques, Bayesian hier-

archical models based on Dirichlet processes or other random probability measures have

greatly increased their popularity. Here, extending the results of Betrò and Guglielmi

(2000), the random probability measure defining the mixing distribution is assumed to

vary in a generalized moment class, as described in Section 2. The resulting robustness

problem will be referred to as nonparametric robustness problem. Since the extension

requires to work with the set M of all finite Borel measures on a separable metric space,

in Section 3 we establish the fundamental results of the generalized moment problem in
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M. The key result is Theorem 3.1, which is similar to Theorem 5 in Kemperman (1983);

proof of this latter was never published, while the former is proved here using a classical

result in convex analysis known as Farkas’ lemma. The application of the general the-

ory to robustness analysis is described in Section 4. Finally, two examples illustrate the

approach.

2. The problem

In the last 10 years, a large amount of papers in the nonparametric Bayesian literature

have been devoted to study inferences in the context of hierarchical mixture modeling,

described as follows:

X1, . . . , Xr|Y1, . . . , Yr are independent

Xi|Yi is distributed according to L(Xi|Yi), i = 1, . . . , r

Y1, . . . , Yr|π̃ are i.i.d. according to π̃,

(2.1)

and

π̃ ∼ q, (2.2)

where q is a nonparametric prior, i.e. the distribution of a random probability measure

π̃. The most popular choice for π̃ is the Dirichlet process, and the resulting model,

introduced by Lo (1984), is known as “mixture of Dirichlet process models” (MDP) or

“Dirichlet mixture of kernels”. Relevant contributions in the context of nonparametric

Bayesian hierarchical mixture modeling include those by, among others, Escobar and

West (1995, 1998) for the MDP model, Petrone (1995) for Bernstein polynomials, Lijoi

et al. (2005) for mixtures of normalized inverse-Gaussian processes, and Nieto-Barajas

et al. (2004) for mixtures of normalized random distribution functions with independent

increments. For an overview on the Bayesian nonparametric approach, see Ghosh and
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Ramamoorthi (2003).

This article considers a more general framework, assuming that the prior q cannot be

uniquely specified but belongs to a generalized moment class. According to (2.1), the data

are represented by r random vectors X1, . . . , Xr with values in IRk, and the conditional

distribution of Xi given Yi is defined by a transition probability density k(x; y), i.e.

k : IRk × Y → [0,+∞), where Y is a measurable subset of IRn, such that

• y 7→ k(x; y) is π-measurable for all x in IRk;

• x 7→ k(x; y) is a probability density on IRk, for all y in Y , with respect to a σ-finite

measure λ on IRk.

Observe that, by (2.1), whatever distribution q is chosen, the prior is concentrated on

the space of densities. We assume that π̃ takes values in a subset S of P(Y), the set of

all probability measures on Y , so that q belongs to P(S). If x = (x1, . . . , xr) is a sample

from (X1, . . . , Xr), the posterior distribution of π̃ is given by the Bayes theorem

q(dπ|x) =
l(π)q(dπ)∫
S l(π)q(dπ)

,

where l(π) := l(π;x) =
∏r

i=1 p(xi; π) is the likelihood function, and p(x; π) :=
∫
Y k(x; y)π(dy).

We assume that q in (2.2) belongs to a (nonempty) generalized moment class Γ,

Γ = {q ∈ P(S) :
∫
S
fi(π)q(dπ) ≤ αi, i = 1, . . . ,m}, (2.3)

where fi are given q-integrable functions, and αi are fixed real constants, i = 1, . . . ,m.

The global robustness problem consists of determining

sup
q∈Γ

∫
S g(π)l(π)q(dπ)∫
S l(π)q(dπ)

(2.4)

where g : S → IR is a given function such that
∫
S g(π)q(dπ|x) exists for all q.
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Observe that, if S is the space of degenerate probability measures on Y , then p(x; π) =

p(x; δy) = k(x; y), and the problem considered here coincides with the parametric problem

considered in Betrò and Guglielmi (1997, 2000). For this reason, (2.3)-(2.4) can be viewed

as an extension to the nonparametric setting of the robustness parametric analysis under

generalized moment conditions.

As concern the functions defining Γ, possible choices for the function g are the fol-

lowing:

• g(π) = IS1(π), the indicator function of some measurable subset S1 of interest; in

this case we are concerned with the posterior probability that the random mixing

probability measure π̃ belongs to S1;

• g(π) = π(A), A ∈ B(Y); in this case, we want to compute the supremum of the a

posteriori expected value of the random variable π̃(A), when q varies in Γ;

• g(π) = p(x; π), x ∈ IRk, i.e. we deal with the predictive density of a future observa-

tion.

As far as the constraints are concerned, possible functions fi’s are:

• fi(π) =
∫
Ki
p(x; π)λ(dx), Ki ∈ B(IRk), so that

∫
S fi(π)q(dπ) =

∫
Ki
mX1(x)λ(dx),

where mX1 denotes the marginal density of a single observation; such a constraint

specifies a bound on the marginal distribution;

• for k = 1, fi(π) =
∫
IR x

i p(x; π)λ(dx) so that
∫
S fi(π)q(dπ) =

∫
IR x

imX1(x)λ(dx),

here the bound is on the moments of the marginal distribution;

• fi(π) =
∫
Y y

iπ(dy), if Y ∈ B(IR); such a constraint represents a bound on the ex-

pected value of the i-th moment functional of the random probability measure π̃.
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Analogously to the parametric problem, the functional to be optimized in (2.4) is

not linear in the argument q; however by means of a variable transformation approach,

it is easy to obtain an equivalent linear optimization problem (see Betrò and Guglielmi,

2000). Indeed, consider the map ψ from P(S) toM(S) which associates to the probability

measure q the finite measure µ defined by

ψ(q)(A) =: µ(A) =
q(A)∫

S l(π)q(dπ)
, A ∈ B(S), (2.5)

assuming that 0 <
∫
S l(π)q(dπ) < +∞. It is easily seen that

∫
S l(π)µ(dπ) = 1 if, and

only if, µ ∈ ψ(P(S)). Moreover, the map ψ is injective. Indeed, if ψ(q1) = ψ(q2) then,

by (2.5) with A = S it holds
∫
S l(π)q1(dπ) =

∫
S l(π)q2(dπ), so that q1(A) = q2(A) for all

A ∈ B(S), i.e. q1 = q2. By this transformation, problem (2.3)-(2.4) turns into

sup
µ∈M1

∫
S
g(π)l(π)µ(dπ), (2.6)

where

M1 = M1(S) := {µ ∈M(S) :
∫
S
f̃i(π)µ(dπ) ≤ 0, i = 1, . . . ,m,

∫
S
l(π)µ(dπ) = 1}

(2.7)

and f̃i(π) := fi(π)− αi, i = 1, . . . ,m.

Problem (2.6)-(2.7) is an instance of the class of generalized moment problems widely

studied by Kemperman (see e.g. Kemperman, 1971; 1983; 1987). The main results which

are useful for our purposes are reported in the following section.

3. Some theory on the generalized moment problem

Consider a general separable metric space S, and let M = M(S) be the set of all

finite Borel measures on S; see Appendix A for preliminaries on the space M. Let

hi : S → IR, u : S → IR be measurable functions and ηi be real constants, i = 1, . . . , n.
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The generalized moment problem consists in determining the upper bound

U := sup
µ∈M1

∫
S
udµ, (3.1)

where M1 = M1(S) := {µ ∈ M :
∫
S h

+
i dµ < +∞,

∫
S hidµ ≤ ηi, i = 1, . . . , n}. We

assume the existence of µ∗ in M1 such that
∫
u−dµ∗ > −∞, so that U > −∞. From

now on, IRn
+ will denote the set {(x1, . . . , xn) ∈ IRn : xi ≥ 0 ∀ i = 1, . . . , n}.

It is easy to show that, for any convex subset M0 of M containing M1, it holds

U ≤ U∗ := inf {
n∑

i=1

βiηi + sup
µ∈M0

∫
S
(u−

n∑
i=1

βihi)dµ, β ∈ IRn
+ }.

At this point we aim to determine: (a) conditions under which U∗ is finite and

U = U∗; (b) a tractable form for U∗. Note that if M0 = M, then

U∗ = inf {
n∑

i=1

βiηi : β ∈ IRn
+,

n∑
i=1

βihi(s) ≥ u(s) ∀ s ∈ S } (3.2)

and the problem of calculating U∗ as in (3.2) is usually called Linear Semi-Infinite

Programming (LSIP) problem; see Goberna and López (1998). However, assuming M0 =

M will not guarantee that U and U∗ coincide. Theorem 3.2, representing the main result

of this section, answers to issue (a) and permits to obtain (3.2) when M0 is a proper

compact subset of M.

We introduce the following conditions:

H1: hi is lower semicontinuous (l.s.c.), i.e. {s ∈ S : hi(s) > b} is an open set for any

b ∈ IR, for all i = 1, . . . , n;

H2: hi(s) ≥ Ci for all s ∈ S, for some constants Ci < 0, i = 1, . . . , n;

H3: there exists β̃ ∈ IRn
+ such that

∑n
i=1 β̃ihi(s) > 1 for all s ∈ S;

H4: for any ε > 0 there exist a compact set Kε in S and βε ∈ IRn
+, with

∑n
i=1 β

ε
i ≤ B for

some positive constant B, such that
∑n

i=1 β
ε
i hi(s) >

1
ε

for all s ∈ KC
ε .
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H5: u is upper semicontinuous (u.s.c.), i.e. −u is l.s.c.;

H6: u(s) ≤ G for all s ∈ S, for some constant G > 0;

H7: there exists β̃ ∈ IRn+1
+ , such that

∑n
i=1 β̃ihi(s)− β̃n+1u(s) > 1 for all s ∈ S;

H8: for any ε > 0 there exist a compact set Kε in S and βε ∈ IRn+1
+ with

∑n+1
i=1 β

ε
i ≤ B

for some positive constant B, such that
∑n

i=1 β
ε
i hi(s)−βε

n+1u(s) >
1
ε

for all s ∈ KC
ε .

Observe that H3 (H4) is a special case of H7 (H8).

Next theorem is the key result of the section. It is analogous to Theorem 5 in

Kemperman (1983), which, however, was stated without proof. Condition H3 used here

appears to be easier to verify than formula (4.4) in Kemperman’s theorem.

Theorem 3.1. Under H1-H4, M1 6= ∅ if, and only if, the following condition

holds:

if β ∈ IRn
+ is such that

n∑
i=1

βihi(s) ≥ 0 for any s ∈ S, then
n∑

i=1

βiηi ≥ 0. (3.3)

Proof. See Appendix B.

Theorem 3.2 stems now from Theorem 3.1; the proof is rather technical and uses

standard arguments of generalized moment theory. The interested reader is referred to

Betrò et al. (2002).

Theorem 3.2. Under H1-H2 and H5-H8, if M1 6= ∅, then

U = inf{
n∑

i=1

βiηi : β ∈ IRn
+,

n∑
i=1

βihi(s) ≥ u(s), ∀ s ∈ S}. (3.4)

Moreover, the supremum U is finite and attained.
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If the metric space S is compact, some of the hypotheses in Theorem 3.2 are auto-

matically satisfied so we can state the following

Corollary 3.1. Let S be compact. Under H1, H5 and H7, if M1 6= ∅, then

U := sup
µ∈M1

∫
S
udµ = inf{

n∑
1

βiηi : β ∈ IRn
+,

n∑
1

βihi(s) ≥ u(s) ∀ s ∈ S}. (3.5)

Moreover, the supremum U is finite and attained.

4. Solving nonparametric robustness problems

In this section we apply the results of the previous one to problem (2.6)-(2.7), using

the same notation as in Section 2. Indeed, any subset S of P(Y) is separable by the

separability of Y ⊂ IRk. Conditions H1-H2 and H5-H8 are immediately transposed into

the following I1-I7, exploiting the nonnegativity of l(π) in the formulation of I6 and I7.

I1: f̃j is l.s.c., j = 1, . . . ,m, and l is continuous;

I2: g is u.s.c.;

I3: f̃j ≥ Cj, j = 1, . . . ,m, where Cj’s are real (negative) constants;

I4: l is bounded;

I5: gl is bounded from above;

I6: there exist β̃0 ∈ IR+, β̃ ∈ IRm+1
+ such that β̃0l(π) +

∑m
i=1 β̃if̃i(π)− β̃m+1g(π)l(π) > 1

for all π in S;

I7: for any ε > 0 there exist a compact set Kε in S and βε
0 ∈ IR+, β

ε ∈ IRm+1
+ with

∑m+1
i=0 βε

i ≤ B for some positive constant B, such that βε
0l(π) +

∑m
i=1 β

ε
i f̃i(π) −

βε
m+1g(π)l(π) > 1

ε
for all π in KC

ε .

10



Remark 1. If I6 holds with β̃m+1 = 0, then choosing ε̃ such that 1 − β̃0ε̃ > 0 and

β̃′i = β̃i/(1 − β̃0ε̃), it is also
∑m

i=1 β̃
′
if̃i(π) > 1 for all π in S such that l(π) ≤ ε̃. Roughly

speaking, when l is small, at least one of the f̃i’s is positive and far from 0. The converse

is also true: if there exist ε̃ > 0 and β̃ ∈ IRm
+ such that

∑m
i=1 β̃if̃i(π) > 1 for all π ∈ S at

which l(π) ≤ ε̃, then I6 holds with β̃m+1 = 0 and β̃0 > (1−∑m
i=1 β̃iCi)/ε̃.

The result follows immediately:

Theorem 4.1. Under I1-I7, if M1(S) 6= ∅, then

supµ∈M1

∫
S g(π)l(π)µ(dπ) = inf{ β0 : β0 ∈ IR, β ∈ IRm

+ ,

β0l(π) +
∑m

1 βif̃i(π) ≥ g(π)l(π) ∀ π ∈ S}.

(4.1)

and the supremum in the left hand-side of (4.1) is finite and attained.

Proof. Apply Theorem 3.2 with n = m+2, u = gl, M1 = M1(S), h1 = l, h2 = −l,

η1 = 1, η2 = −1, hi+2 = f̃i, ηi+2 = 0, i = 1, . . . ,m.

Remark 2. According to Corollary 3.1, when S is compact, only assumptions I1-I2

and I6 are to be verified.

Remark 3. If any of the constraint functions fj(π) has the form
∫
Y z(y)π(dy), and

z : Y → IR is bounded from below and l.s.c, then it is easy to show that fj is l.s.c. as well

(see Lemma 3 in Kemperman, 1983). Indeed, the result holds not only for probabilities,

but also for finite measures.

Here follow some considerations about the solution of (4.1). Theorem 4.1 shows that

the required maximum can be obtained solving a LSIP problem. Although algorithms

11



for this latter exist, regardless of the structure of S (see e.g. Betrò, 2004), in practice

the infinite dimensionality of S must be dealt with, so that a finite approximation is

necessary. Treatment of such computational aspects is beyond the scope of this paper.

Once it has been ensured that the supremum in (2.6) is reached by some measure

µ∗, then it can be assumed that µ∗ has finite support of at most m + 1 points. Indeed,

setting

z0 =
∫
S
gldµ∗, zi =

∫
S
f̃idµ

∗, i = 1, . . .m,

and recalling that 1 =
∫
S ldµ

∗, Theorem 1 in Rogosinsky (1958) (see also Lemma 1 in

Kemperman, 1983) states that there exists a measure µ, having finite support of at most

m + 2 points, and such that
∫
S ldµ = 1,

∫
S gldµ = z0,

∫
S f̃idµ = zi, i = 1, . . . ,m, so that

such a measure is still optimal. Consequently, the problem of determining supµ∈M1

∫
S gldµ

turns out be an ordinary (finite) linear programming problem in m+2 variables and m+1

constraints for which it is well known that, if a solution exists, then it can be assumed

to have at most m+ 1 non-null coordinates.

Denoting by µ∗ an optimal measure with atoms π∗1, . . . , π
∗
k and corresponding masses

µ∗1, . . . , µ
∗
k, µ

∗
j > 0, j = 1, . . . , k, k ≤ m+1, if the infimum in (4.1) is a minimum achieved

by, say, β∗0 ∈ IR and corresponding coefficients β∗i ≥ 0 (i = 1 . . . ,m), then it is

0 ≤
∫ (
β∗0 l +

∑m
i=1 β

∗
i f̃i − gl

)
dµ∗

= β∗0 +
∑m

i=1 β
∗
i

∫
f̃idµ

∗ − β∗0 ≤ 0

so that

β∗0 l(π
∗
j ) +

m∑
i=1

β∗i f̃i(π
∗
j ) = g(π∗j )l(π

∗
j ), j = 1, . . . , k (4.2)

and
k∑

j=1

f̃i(π
∗
j )µ

∗
j = 0 (4.3)
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for all i’s such that i ∈ {1, . . . ,m} and β∗i > 0.

Conversely, if µ∗ in M1 is an atomic measure with support π∗1, . . . , π
∗
k , k ≤ m + 1

which satisfies (4.2)–(4.3), then µ∗ is an optimal measure. Indeed

β∗0 ≥
∫
gldµ∗ = β∗0

∫
ldµ∗ +

m∑
i=1

β∗i

∫
f̃idµ

∗ = β∗0

so that
∫
gldµ∗ = β∗0 , i.e. µ∗ is optimal.

The above characterization of an optimal measure is useful for practical computations,

as illustrated in the next Section.

Finally, observe that in order to apply Theorem 4.1 we need to either provide con-

ditions under which S is compact, or single out compact subsets of S (see I7). If we

assume that Y is compact and S is closed, then S is compact; indeed, if Y is compact,

then S ⊂ P(Y) is trivially tight and, being closed, is compact too by Prohorov’s theorem

(see, e.g., Parthasarathy, 1967; Theorem 6.7, p. 47). If S is not compact, but Y and

S are closed subsets in their corresponding spaces, then S is a Polish space too, so by

Prohorov’s theorem we can characterize compact sets in S as the closures of tight sets is

S. For instance, condition I7 holds when one of the functions f̃i’s, say f̃1, has the form

f̃1(π) =
∫
Y
z(y)π(dy)− α1, z(y) ≥ C, C < 0,

δ0 is a positive real number such that 1/δ0−C+α1 > 0, and for some family of nonempty

compact sets {Aδ ⊂ Y ; 0 < δ ≤ δ0} nondecreasing when δ decreases to zero and such

that π(AC
δ0

) = 0 for some π in S, there exists a function v(δ) such that

lim
δ→0+

v(δ) = 0, v(δ) inf
y∈AC

δ

z(y) ≥ 1

δ
− C + α1 for δ ≤ δ0.

This is the case, e.g., if Y = [0,+∞), z(y) ≥ yα and nondecreasing in [K,+∞) for some

α > 0 and K > 0, provided that π((K,+∞)) = 0 for some π in S; indeed, it is easily
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verified that we can take Aδ = [0, (z(1/δ)(1/δ − C + α1))
1
α ] and v(δ) = z−1(1/δ) for

δ ≤ δ0 = 1/K, assuming 1/K − C + α1 ≥ 1.

For any ε ≤ δ0, define Kε = {π ∈ S : π(AC
δ ) ≤ v(δ) ∀ δ ≤ ε } 6= ∅. By definition,

Kε is tight and is easily seen to be closed, so that it is compact. For any π in KC
ε , there

exists δπ ≤ ε such that π(AC
δπ

) > v(δπ), and hence

f̃1(π) =
∫
AC

δπ

z(y)π(dy) +
∫
Aδπ

z(y)π(dy)− α1

≥ inf
y∈AC

δπ

z(y)v(δπ) + C − α1 ≥ 1
δπ
≥ 1

ε
∀ π ∈ KC

ε ,

so that I7 is fulfilled by choosing β̃ε
1 = 1 and all other coefficients equal to 0. An

analogous argument can be developed when g(π) has the form
∫
S zdπ. Essentially, this

example shows that condition I7 is a request for “divergence to infinity” for some of the

constraint functions f̃i’s or for −gl.

5. Examples

We apply Theorem 4.1 to the study of robustness in the following two simple situa-

tions, which aim at illustrating a technique that can be applied to more general cases.

Example 1. (S compact). According to notation in Sections 2 and 4, assume that,

for any i, Xi|Yi in (2.1) is Bernoulli distributed with parameter Yi so that

p(x; π) =
∫
Y
yx(1− y)1−xπ(dy), x ∈ {0, 1},

where Y = [0, 1] and π ∈ S = P(Y). The likelihood can be expressed simply as

l(π) =
( ∫

Y
yπ(dy)

)∑r

1
xi ·

(
1−

∫
Y
yπ(dy)

)r−
∑r

1
xi

, π ∈ S.

Let S1 = {(1 − α)π1 + απ2 : α ∈ [0, 1]} and S2 = {(1 − α)π1 + απ2 : α ∈ [1
4
, 3

4
]}, where

π1 and π2 are probability measures in S such that
∫ 1
0 yπ1(dy) = 1/4,

∫ 1
0 yπ2(dy) = 3/8.
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Assume r = 2, x1 = x2 = 1, m = 3, and let

f̃1(π) =
∫
Y
yπ(dy)− 1

2
, f̃2(π) = −

∫
Y
yπ(dy) +

1

2
, f̃3(π) =

1

8
− IS2(π).

This means that q belongs to Γ if, and only if,

P (X1 = 1) =
∫
S
f1(π)q(dπ) =

∫
S

∫ 1

0
yπ(dy)q(dπ) =

1

2
and q(S2) ≥

1

8
.

Finally, consider

g(π) = IS1(π),

assuming we are interested in the supremum of the posterior probability that π̃ belongs

to S1.

Since S is compact by the compactness of Y , in order to apply Theorem 4.1 it is

sufficient to verify I1, I2 and I6. Note that M1(S) is a nonempty set as, for example, it

contains the measure with atoms (π1 + π2)/2 and δ3/4 and weights, respectively, 0.1696

and 0.1272. Moreover, the function f̃3 is l.s.c. since S2 is closed in S, g is u.s.c. since S1

is closed in S, while f̃1 is continuous and bounded and l is continuous and positive on S.

By Remark 1, condition I6 is verified since, if l(π) ≤ ε < 1
4
, then f̃2(π) ≥ 1

2
− ε1/2 > 0, so

that
∑
β̃if̃i(π) > 1 for β̃1 = β̃3 = 0, β̃2 ≥ (1/2− ε1/2)−1 and β̃0 > (1 + β̃2/2)/ε. Observe

that, if π ∈ S1, then
∫ 1
0 yπ(dy) = 1

4
+ λ

8
for some λ in [0,1]; if π 6∈ S1, denote

∫ 1
0 yπ(dy)

by z. Therefore, by Theorem 4.1, the solution of (2.3)-(2.4) is the solution of the LSIP
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problem

β∗0 = inf β0

(β0 − 1)
(

1
4

+ λ
8

)2
+ b

(
−1

4
+ λ

8

)
− 7

8
β3 ≥ 0, for all 1

4
≤ λ ≤ 3

4
,

(β0 − 1)
(

1
4

+ λ
8

)2
+ b

(
−1

4
+ λ

8

)
+ 1

8
β3 ≥ 0, for all 0 ≤ λ < 1

4
or 3

4
< λ ≤ 1,

β0z
2 + b

(
z − 1

2

)
+ 1

8
β3 ≥ 0, for all z ∈ [0, 1],

0 ≤ β0 ≤ 1, b = β1 − β2 ∈ IR, β3 ∈ IR+.

(5.1)

As 0 ≤ β0 ≤ 1, the first set of inequalities, when λ = 3
4
, yields b ≤ 0. Therefore,

(β0 − 1)
(

1
4

+ λ
8

)2
+ b

(
−1

4
+ λ

8

)
− 7

8
β3, as a function of λ, is nonincreasing on [0,1], so

that the first and the second sets of inequalities hold if, and only if, they hold for λ = 3
4

and λ = 1, respectively. As far as the third condition is concerned, it can be clearly seen

that it holds when 2β0 + b ≥ 0; if 2β0 + b < 0, it holds if, and only if, β0 + b
2

+ 1
8
β3 ≥ 0.

Summing up, solving (5.1) is equivalent to solve the LP problems

min β0

(β0 − 1)
(

11
32

)2
+ b

(
− 5

32

)
− 7

8
β3 ≥ 0

(β0 − 1)
(

9
64

)2
+ b

(
−1

8

)
+ 1

8
β3 ≥ 0

2β0 + b ≥ 0

0 ≤ β0 ≤ 1

b ≤ 0

β3 ≥ 0,

min β0

(β0 − 1)
(

11
32

)2
+ b

(
− 5

32

)
− 7

8
β3 ≥ 0

(β0 − 1)
(

9
64

)2
+ b

(
−1

8

)
+ 1

8
β3 ≥ 0

2β0 + b < 0

β0 + 1
2
b+ 1

8
β3 ≥ 0

0 ≤ β0 ≤ 1

b ≤ 0

β3 ≥ 0.

The corresponding solutions are, respectively, β0 = 0.3483, b = −0.6967, β3 = 0.0364,

and β0 = 0.3454, b = −0.6999, β3 = 0.0366, so that β∗0 = 0.3454. As observed in Section
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4, the optimal measure µ∗ is discrete with at most m + 1 points {π∗1, . . . , π∗m+1} in its

support. This latter set can be found via (4.2) with β∗0 = 0.3454, b∗ = β∗2 − β∗1 = 0.6999,

β∗3 = 0.0366; the set of the corresponding weights is determined solving the finite system

given by (4.3) together with
∫
ldµ∗ = 1 as seen in Section 4. It turns out that

µ∗ = 0.6546 δπ∗
1
+ 0.3967 δπ∗

2
+ 2.1226 δπ∗

3
,

where π∗1 = δ1, π
∗
2 = 1

4
π1 + 3

4
π2 and π∗3 = π2.

To complete the analysis of robustness, we need to determine

inf
q∈Γ

∫
S IS1(π)l(π)q(dπ)∫

S l(π)q(dπ)
= − sup

q∈Γ

∫
S −IS1(π)l(π)q(dπ)∫

S l(π)q(dπ)
. (5.2)

Unfortunately −IS1 is not u.s.c., as S1 is a closed set, so that we cannot apply directly

Theorem 4.1. However, denoting the interior of S1 by S ′1, −IS′
1

is u.s.c., and

inf
q∈Γ

∫
S IS1(π)l(π)q(dπ)∫

S l(π)q(dπ)
≥ inf

q∈Γ

∫
S IS′

1
(π)l(π)q(dπ)∫

S l(π)q(dπ)
.

We will determine the right hand-side in the above inequality and show that it is equal

to the left hand-side.

We note that condition I6 is satisfied here too. Using the same argument as before,

we obtain an LP problem having solution β∗0 = −0.0208, b∗ = −β0 and β∗3 = 0.0833, so

that

µ∗ = 0.6546 δπ∗
1
+ 0.0793 δπ∗

2
+ 2.1226 δπ∗

3
,

where π∗1 = δ1, π
∗
2 = 1

4
π1 + 3

4
π2 and π∗3 = π2. Since the atoms of µ∗ do not belong to

S1 \ S ′1, then µ∗ is an optimal measure for (5.2) too. Summing up, for all q in Γ, it is

0.0208 ≤
∫
S IS1(π)l(π)q(dπ)∫

S l(π)q(dπ)
≤ 0.3454.
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Example 2. (S not compact). We assume that X1, . . . , Xr are i.i.d., given π, with

density

p(x; π) =
∫
Y

y∑
k=1

λ
(y)
k ke−kxπ(dy), x > 0, (5.3)

where Y = [1,+∞), S = P(IN), and λ
(y)
1 , . . . , λ(y)

y are fixed probability weights for all

y = 1, 2, . . ., i.e. Xi|Yi is distributed according to a mixture of y exponentials.

We consider g(π) = IS1(π), with S1 = {δ1}, and

f̃1(π) =
∫
Y
yπ(dy)− α1, f̃2(π) = −π({2})− π({3})− α2,

where α1, α2 are fixed real constants, α1 ≥ 1, −1 ≤ α2 ≤ 0, i.e., we are interested

here in the supremum of the posterior probability that X1, . . . , Xr is a sample from the

exponential distribution with parameter equal to 1, under the constraints

Eq

( ∫
Y
yπ̃(dy)

)
≤ α1, Eq

(
π̃({2}) + π̃({3})

)
≥ α2.

Observe that a more general example would result assuming that the weights λ
(y)
1 , . . ., λ

(y)
y

in (5.3) are random as well, so that π should represent the distribution of (y, λ
(y)
1 , . . ., λ(y)

y ).

However, in this framework, fixing λ
(y)
1 , . . . , λ(y)

y for all y = 1, 2, . . . in (5.3) corresponds

to averaging with respect to a fixed distribution for (λ
(y)
1 , . . . , λ(y)

y ) given y.

In this example, S = P(IN) is not compact, but it is easily seen to be closed. There-

fore, due to the arguments introduced at the end of Section 4, I7 holds since f1 has the

form
∫
Y z(y)π(dy). Moreover, f̃1 is l.s.c. (see Remark 3), f̃2 and l are continuous on S,

g is u.s.c. since S1 is trivially closed, and it is easy to verify that I3, I4 and I5 hold. As

far as I6 is concerned, simple calculations show that the condition is satisfied, applying

Remark 1 with β̃3 = β̃1 = 0 and β̃0, β̃2 large enough. Finally, it can be checked that, if

−α2 ≤ α1 − 1, then M1(S) 6= ∅. Therefore, the required maximum is equal to

inf{β0 : 0 ≤ β0 ≤ 1, β1, β2 ≥ 0, β0l(π) + β1f̃1(π) + β2f̃2(π) ≥ g(π)l(π) ∀π ∈ S}. (5.4)
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Now, assuming r = 1, and denoting π({i}) by πi, the feasible region is given by

(β0 − 1)e−x1 + β1(1− α1) + β2(−α2) ≥ 0 (5.5)

β0

+∞∑
=1

πi

( i∑
k=1

λ
(i)
k ke

−kx1

)
+ β1

( +∞∑
1

iπi − α1

)
+ β2(−π2 − π3 − α2) ≥ 0, (5.6)

where 0 ≤ π1 < 1, 0 ≤ ∑+∞
1 πi ≤ 1 in (6.6), which is linear in π := {π1, π2, . . .}.

Evaluating (5.6) at the simplex vertices, together with (5.5), gives the following equivalent

formulation of (5.4)

min0≤β0≤1 β0

β1 ≥ 0, β2 ≥ 0

(β0 − 1)e−x1 + β1(1− α1) + β2(−α2) ≥ 0

β0(λ
(2)
1 e−x1 + λ

(2)
2 2e−2x1) + β1(2− α1) + β2(−1− α2) ≥ 0

β0(λ
(3)
1 e−x1 + λ

(3)
2 2e−2x1 + λ

(3)
3 3e−3x1) + β1(3− α1) + β2(−1− α2) ≥ 0.

For example, if α1 = 1.5, −α2 = 0.5, x1 = 4.6 and λ
(2)
1 = 0.2, λ

(3)
1 = 0.01, λ

(3)
2 = 0.02,

we found that the infimum is equal to β∗0 = 0.8223, while, if α1 = 3.5, −α2 = 0.75,

x1 = 0.6931 and λ
(2)
1 = 0.5, λ

(3)
1 = 1

3
, λ

(3)
2 = 1

3
, then β∗0 = 0.2667.

To complete the example, we note that the infimum in (5.2) is equal to 0 in this case;

indeed, there exists a degenerate measure q̂ = δπ̂ belonging to Γ, where the support of π̂

is contained in {1, 2, 3} and π̂({1}) < 1.
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Appendix A

Let S be a metric space, endowed with the class B(S) of Borel sets in S. Let P(S) be

the space of all probability measures on (S,B(S)), with the topology of weak convergence:

πn
w→ π in P(S) if

∫
S fdπn →

∫
S fdπ for every bounded, continuous real function f on

S. Let M(S) be the space of all finite positive measures on (S,B(S)), equipped with

the topology of weak convergence as well (see Parthasaraty, 1967, p. 40). Over P(S)

and M(S) we consider the corresponding Borel σ-fields. It is well known that P(S) and

M(S), both endowed with the topology of weak convergence, are separable metric spaces

if, and only if, S is separable; distances metrizing the topology of weak convergence in

P(S) and M(S) are the Prohorov distance and the one described in Doob (1994), p.

139-140, respectively. Moreover, observe that if S is a Polish space then both P(S) and

M(S) are Polish in their corresponding topologies (see Prohorov, 1956).

When dealing with finite measures on a topological space, an important notion is

the tightness of a family of finite measures. A subset A of M(S) is tight if for all ε > 0

there exists a compact set Kε in S such that µ(KC
ε ) < ε for each µ in A (Ash, 1972, p.

330). Recalling that a subset A of a metric space is relatively compact if every sequence

of elements in A contains a weakly convergent subsequence, the following theorem states

that tightness is a sufficient condition for relative compactness of a set of uniformly

bounded measures.

Theorem A.1 Let S be separable. If A ⊂ M(S) is tight and supµ∈A µ(S) ≤ C for

some positive constant C, then A is relatively compact.

This is a part of the well-known Prohorov’s theorem; see, for instance, Ash (1972),

where the result is stated when S = IR.
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Appendix B

Proof of Theorem 3.1. The “only if” part is obvious. Indeed, if M1 6= ∅, there

exists a finite measure µ̃ inM1; therefore, if we choose β ∈ IRn
+ such that

∑n
i=1 βihi(s) ≥ 0

for any s ∈ S, we have

0 ≤
∫
S

n∑
i=1

βihi(s)µ̃(ds) ≤
n∑

i=1

βiηi.

We prove the “if” part in several steps. We show that the measures in M1 are uniformly

bounded (Step 1), so that M1 is tight (Step 2). As M1 is contained in a convex and

compact subset too, we will provide a necessary and sufficient condition for M1 to be

not empty (Step 3) that is implied by (4.2) (Step 4).

Step 1. M1 ⊂MD := {µ ∈M(S) : µ(S) ≤ D} for some positive D.

Indeed, if µ ∈M1, by H3,

µ(S) =
∫
S
µ(ds) ≤

∫
S

n∑
i=1

β̃ihi(s)µ(ds) ≤
n∑

i=1

β̃iηi;

therefore, if D := 1 +
∑n

i=1 β̃iηi, then D > 0 and µ(S) ≤ D. Of course, if M1 = ∅,

trivially M1 ⊂MD for all D > 0.

Step 2. M1 is tight.

This is obvious when M1 = ∅. Otherwise, let µ ∈M1 and σ > 0; by H2 and H4 we have

∑n
i=1 β

σ
i ηi ≥

∫
S

∑n
i=1 β

σ
i hi(s)µ(ds) =

∑n
i=1 β

σ
i

∫
Kσ
hi(s)µ(ds) +

∫
KC

σ

∑n
i=1 β

σ
i hi(s)µ(ds)

≥ ∑n
i=1 β

σ
i Ciµ(Kσ) + 1

σ
µ(KC

σ ) =
∑n

i=1 β
σ
i Ciµ(S) +

(
1
σ
−∑n

i=1 β
σ
i Ci

)
µ(KC

σ ),

so that

µ(KC
σ ) ≤

∑n
i=1 β

σ
i ηi −

∑n
i=1 β

σ
i Ciµ(S)

1
σ
−∑n

i=1 β
σ
i Ci

≤ σ
n∑

i=1

βσ
i (ηi − Ciµ(S)).
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By H4

n∑
i=1

βσ
i (ηi − Ciµ(S)) ≤

n∑
i=1

βσ
i (ηmax − CminD) ≤ max{0, ηmax − CminD}B

where ηmax := maxi ηi and Cmin := miniCi, and this yields

µ(KC
σ ) ≤ σBmax{0, ηmax − CminD} =: δ(σ) → 0, for σ → 0,

i.e. M1 is tight.

Step 3. M1 6= ∅ if, and only if, the following condition holds:

inf
µ∈ND

∫
S

n∑
i=1

βihi(s)µ(ds) ≤
n∑

i=1

βiηi, for all β ∈ IRn
+, (B.1)

where ND := {µ ∈ MD : µ(KC
σ ) ≤ δ(σ) ∀ σ > 0}, and MD and δ(σ) are as in previous

Steps.

Indeed, first of all, observe that M1 ⊂ ND; moreover, if Nσ := {µ ∈ MD : µ(KC
σ ) ≤

δ(σ)}, it is ND = ∩σ>0Nσ. We prove that, for all σ > 0, if {µn}n ⊂ Nσ, µn
w−→ µ, then

µ ∈ Nσ and, hence, Nσ is closed. By Lemma 3 in Kemperman (1983), for each n, σ > 0,

µn(KC
σ ) =

∫
S IKC

σ
dµ = sup{

∫
S fdµn : f bounded and continuous, f ≤ IKC

σ
}, since IKC

σ
is

lower semicontinuous and bounded from below. Hence, if f is bounded and continuous

and f ≤ IKC
σ
, it is

∫
S
fdµ = lim

n→+∞

∫
S
fdµn ≤ lim sup

n→+∞

∫
S
IKC

σ
dµn ≤ δ(σ)

since µn ∈ Nσ, so that

µ(KC
σ ) ≤ δ(σ),

i.e. µ ∈ Nσ. Therefore, ND is closed and, since it is tight, it is compact too by Theorem

A.1. As M1 ⊂ ND and ND is convex, applying Theorem 1 in Kemperman (1983) with

M0 = ND, we obtain that (B.1) is a necessary and sufficient condition for M1 to be

nonempty.
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Step 4. (3.3) yields (B.1), concluding our proof.

Introducing the notation η = (η1 . . . , ηn)′, hs = (h1(s), . . . , hn(s))′, (3.3) can be

rewritten as

h′sβ ≥ 0, β ≥ 0 ⇒ η′β ≥ 0, β ≥ 0

where y′ denotes the transpose of the vector y. By Farkas’ lemma (see Goberna and

López, 1998, p. 71) this is true if, and only if, η belongs to the closure of the convex cone

generated by {hs, s ∈ S} and the canonical basis in IRn. It is easy to show (see Goberna

and López, 1998, Exercise 3.5(iii), p. 76) that η belongs to the closure of this cone if,

and only if, there exists a vector ν ∈ IRn such that for any ε > 0 there exist constants

µε
s ≥ 0 (all but finitely many, say k, equal to 0) and a vector λε ∈ IRn

+ such that

λε +
∑
s

µε
shs = η + εν. (B.2)

Multiplying (5.) by β ∈ IRn
+, we obtain

∑
s

µε
sh
′
sβ ≤ λ′εβ +

∑
s

µε
sh
′
sβ = η′β + εν ′β, (B.3)

and the left hand-side can be written as
∫
S h

′
sβµ̄ε(ds), where µ̄ε is the measure on S with

masses µε
s1
, . . . , µε

sk
at some points s1, . . . , sk in S, respectively. If µ̄ε ∈ ND, then by (B.3)

we have

inf
µ∈ND

∫
S
h′sβµ(ds) ≤ η′β + εν ′β → η′β as ε→ 0,

i.e. condition (B.1) holds, so that M1 6= ∅.

It remains to show that µ̄ε ∈ ND. It is sufficient to consider ε < 1.

By H3 e (B.3) it is

µ̄ε(S) =
∑
s

µε
s ≤

∑
s

µε
sh
′
sβ̃ ≤ η′β̃ + εν ′β̃ ≤ η′β̃ + ν ′β̃.
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Redefining D = max{D, η′β̃ + ν ′β̃}, it is µ̄ε ∈MD. Multiplying (B.2) by βσ, by H2 and

H4 we have

η′βσ + εν ′βσ ≥ ∑
s µ

ε
sh
′
sβ

σ =
∑

s∈Kσ
µε

sh
′
sβ

σ +
∑

s 6∈Kσ
µε

sh
′
sβ

σ ≥ ∑
s∈Kσ

µε
sh
′
sβ

σ + 1
σ

∑
s 6∈Kσ

µε
s

≥ ∑
s∈Kσ

µε
sCmin(

∑
j β

σ
j ) + 1

σ

∑
s 6∈Kσ

µε
s ≥ BCmin

∑
s∈Kσ

µε
s + 1

σ
µ̄ε(K

C
σ )

≥ BCminµ̄ε(S) + 1
σ
µ̄ε(K

C
σ ) ≥ BCminD + 1

σ
µ̄ε(K

C
σ ).

Hence,

µ̄ε(K
C
σ ) ≤ σ(η′βσ + εν ′βσ −BCminD) ≤ σ

∑
j(ηj + ενj)β

σ
j − σBCminD

≤ σ(νmax + ηmax)B − σBCminD ≤ σB(max{0, ηmax + νmax − CminD} = δ∗(σ).

Redefining δ(σ) as max{δ(σ), δ∗(σ)} we have that µ̄ε ∈ Nσ for all σ > 0 and, hence,

µ̄ε ∈ ND.
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Betrò B., Bodini, A. and Guglielmi, A. (2002). Generalized Moment Theory and Robust

Bayesian Analysis: the Nonparametric Case. Technical Report 02-06, CNR-IMATI,

Milan.
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