

Fuzzy Sets and Systems 95 (1998) 99-102

Short Communication

A new proof of Nguyen's compatibility theorem in a more general context

Carlo Bertoluzza*, Antonella Bodini

Universitá di Pavia, Dipartimento di Informatica e Sistemistica, Via Abbiategrasso 209-27100 Pavia, Italy

Received November 1995; revised October 1996

Abstract

Let $f(\widetilde{R},\widetilde{S})$ be the image of a pair of fuzzy subsets constructed by applying Zadeh's (1975) extension principle to a function of two variables. Nguyen (1973) gave a necessary and sufficient condition for the α -cuts of $f(\widetilde{R},\widetilde{S})$ to be equal to the crisp images of the α -cuts of $\widetilde{R},\widetilde{S}$. Here we give a simplified proof of this theorem which also holds in a more general context: particularly for second-order fuzzy subsets. © 1998 Elsevier Science B.V.

Keywords: Extension principle; α-Cuts; Compatibility

1. The compatibility result

Let (L, \preceq) be a complete lattice with minimum and maximum elements denoted respectively by m and M, and let $\widetilde{\mathscr{P}}_L(X)$ be the family of L-fuzzy subsets of the space X, that is the family of maps (\widetilde{A}) from X to L. For each $l \in L$ the l-cut of \widetilde{A} is the crisp subset $A_l = \{x \in X \mid \widetilde{A}(x) \succeq l\}$.

Definition 1. Let $\{A_l^* \mid l \in L\}$ be a nested family of crisp subsets of X (in the sense that $l', l'' \in L, l' \prec l'' \Rightarrow A_{l'}^* \supseteq A_{l''}^*$). We say that $\{A_l^*\}$ generates (is a generator of) the fuzzy subset \widetilde{A} if

$$\widetilde{A}(x) = \sup\{l \mid x \in A_l^*\}. \tag{1}$$

Proposition 1. It is evident that the class $\{A_l\}$ of the *l*-cuts is a (canonical) generator of \widetilde{A} , and moreover, if $\{A_l^*\}$ is another generator of \widetilde{A} , then $A_l^* \subseteq A_l$.

In fact if $x \in A_t^*$ then $t \leq \sup\{l \mid x \in A_l^*\} = \widetilde{A}(x)$, and therefore $x \in A_t$.

Proposition 2. A necessary and sufficient condition for $A_l^* = A_l$ is the following:

$$\sup\{l \mid x \in A_l^*\} = \max\{l \mid x \in A_l^*\}. \tag{2}$$

(a) (Necessity) $A_l^* = A_l \Rightarrow \sup = \max$. Suppose $\widetilde{A}(x) = t$. Then $x \in A_t$ and therefore $x \in A_t^*$. Since $x \in A_t^*$ we have $t \leq \widetilde{A}(x)$, and since $\widetilde{A}(x) = t$ we have $t = \max\{l \mid x \in A_l^*\}$. Thus the necessity of the condition is proved.

(b) (Sufficency) sup = $\max \Rightarrow A_t^* = A_t$. We already know that $A_t^* \subseteq A_t$. Now we will prove that $A_t \subseteq A_t^*$. Suppose $x \in A_t$; then $\widetilde{A}(x) = p \succeq t$. But $\widetilde{A}(x) = \sup\{l \mid x \in A_t^*\} = \max\{l \mid x \in A_t^*\}$ (by assumption), and therefore $x \in A_p^*$. Since $A_p^* \subseteq A_t^*$ (because $p \succeq t$) we also have $x \in A_t^*$ and then the sufficiency of the condition is proved.

^{*} Corresponding author.

Let f be a map from X to Y and let $f(\widetilde{A})$ be the L-fuzzy set induced on Y by \widetilde{A} , via Zadeh's extension principle [2], that is

$$f(\widetilde{A})(y) = \begin{cases} \sup I(y) & \text{if } y \in f(X), \\ m & \text{otherwise,} \end{cases}$$
 (3)

where $I(y) = {\widetilde{A}(x) | f(x) = y}$.

Proposition 3. The family $\{f(A_l)\}$ of the images of the l-cuts is a generator of $f(\widetilde{A})$.

In order to prove this result let $\beta(y)$ and $\gamma(y)$ be defined as follows:

$$\beta(y) = f(\widetilde{A})(y),\tag{4}$$

$$\gamma(y) = \begin{cases} \sup R(y) & \text{if } R(y) \neq \emptyset, \\ m & \text{otherwise.} \end{cases}$$
 (5)

where $R(y) = \{l \in L \mid y \in f(A_l)\}$. We have to prove that

$$\beta(y) = \gamma(y). \tag{6}$$

Since $A_m = X$ it is easy to check that $y \notin f(X)$ iff $R(y) = \emptyset$. In fact, if $y \notin f(X) = f(A_m)$, then $y \notin f(A_l) \ \forall l$ (because $A_l \subseteq X$); therefore $R(y) = \{l \mid y \in f(A_l)\} = \emptyset$. On the other hand, if $R(y) = \emptyset$, then $y \notin f(A_l) \ \forall l$, and in particular $y \notin f(A_m) = f(X)$. Thus equality (6) holds in this case. What we have to do is then to prove that, when $y \in f(X)$ and $R(y) \neq \emptyset$, we have

- $-\{f(A_l)\}\$ is a nested family in the sense of Definition 1 [this is quite evident because $l \leq n \Rightarrow A_l \supseteq A_n \Rightarrow f(A_l) \supseteq f(A_n)$],
- Eq. (6) holds.

(a) $\gamma(y) \leq \beta(y)$. If $\alpha \in R(y)$, then by definition $y \in f(A_{\alpha})$. Therefore $\exists \overline{x} \in A_{\alpha}$ such that $f(\overline{x}) = y$ and $A(\overline{x}) \succeq \alpha$ (because $\overline{x} \in A_{\alpha}$). Then we have

$$\alpha \preceq \widetilde{A}(\overline{x}) \preceq \sup{\{\widetilde{A}(x) \mid f(x) = y\}}$$

= $\sup I(y) = \beta(y)$.

So we proved that $\beta(y)$ is larger than all values $\alpha \in R(y)$. Therefore $\beta(y) \succeq \sup R(y) = \gamma(y)$.

(b) $\gamma(y) \succeq \beta(y)$. Let us consider an element $t \in I(y)$. By definition there exists a point $x^* \in X$ such that $f(x^*) = y$ and $\widetilde{A}(x^*) = t$ that is $x^* \in A_t$. This

means that $y \in f(A_t)$. Therefore $t \in R(y)$. So we proved that $I(y) \subseteq R(y)$ and consequently

$$\beta(y) = \sup I(y) \le \sup R(y) = \gamma(y).$$

Clearly (a) and (b) imply equality (6).

Corollary 1. $\sup\{\widetilde{A}(x)|f(x)=y\}=\max\{\widetilde{A}(x)|f(x)=y\}$ is a necessary and sufficient condition in order to have $[f(\widetilde{A})]_l=f(A_l)$.

The proof is an immediate consequence of Propositions 2 and 3. In fact, we can use Proposition 3 to deduce that $\{f(A_l)\}$ is a generator of $f(\widetilde{A})$. Thus, by using Proposition 2, we obtain the thesis.

Corollary 2 (Nguyen's result). If f(u,v) is a function of two variables defined on $U \times V$ and $\widetilde{R}, \widetilde{S}$ are two fuzzy subsets of U and V, then we have

$$[f(\widetilde{R}, \widetilde{S})]_{l} = f(R_{l}, S_{l})$$

$$\iff \sup\{\min[\widetilde{R}(u), \widetilde{S}(v)] \mid f(u, v) = y\}$$

$$= \max\{\min[\widetilde{R}(u), \widetilde{S}(v)] \mid f(u, v) = y\}. \tag{7}$$

In order to prove this result, it is sufficient to apply Corollary 1 to the case where $X = U \times V, \widetilde{A} = \widetilde{R} \times \widetilde{S}$, with $\widetilde{R} \in \mathcal{P}(U), \widetilde{S} \in \mathcal{P}(V)$ and $(\widetilde{R} \times \widetilde{S})(u,v) = \min[\widetilde{R}(u), \widetilde{S}(v)]$. It is easy to recognize that $(\widetilde{R} \times \widetilde{S})_l = (R_l \times S_l) [\min{\{\widetilde{R}(u), \widetilde{S}(v)\} \succeq l \Leftrightarrow \widetilde{R}(u) \succeq l, \widetilde{S}(v) \succeq l]}$. Nguyen's theorem follows immediatly.

It is evident that the same result also holds if we apply the extension principle to a function of several variables, i.e. if $X = U_1 \times U_2 \times \cdots \times U_n$.

Corollary 3. Nguyen's compatibility result also holds for second-order fuzzy sets.

This descends from the fact that the family L of the functions from [0,1] to [0,1], equipped with the order relation $f \leq g \Leftrightarrow f(x) \leq g(x) \, \forall x \in [0,1]$, is a complete lattice.

2. Two examples

We will show here two examples which refer to Corollary 1. We will point out that the existence or the absence of the condition "sup"="max" may depend either on the subset \widetilde{A} or on the function f.

Example 1. Let $(L = [0, 1], \preceq)$ be the lattice defined by

- $-t \leq 1$, $0 \leq t$,
- if x, y are rational, then $x \leq y \iff x \leqslant y$,
- if x, y are irrational, then $x \leq y \iff x \leq y$,
- if x is rational and y is irrational (or vice-versa), then x and y are not comparable.

It is easy to check that

$$x \lor y = \begin{cases} 1 & \text{if } x \text{ and } y \text{ are not comparable,} \\ \max(x, y) & \text{otherwise,} \end{cases}$$

$$x \wedge y = \begin{cases} 0 & \text{if } x \text{ and } y \text{ are not comparable,} \\ \min(x, y) & \text{otherwise} \end{cases}$$

In this example both spaces X and Y are the interval [0,1] and the subset \widetilde{A} is given by $\widetilde{A}(x)=x$. Note the difference between the two x's appearing in this equality; although they are the same number, the x in $\widetilde{A}(x)$ is a point in the space X, whereas the x on the right-hand side is a membership value.

Case 1.1: The function $f: X \to Y$ is defined by

$$f(x) = \begin{cases} 4x^2 & \text{if } x \le 0.5, \\ 2(1-x) & \text{if } x > 0.5. \end{cases}$$

It is easy to check that

$$f(\widetilde{A})(y) = \begin{cases} 1 & \text{if } y \in \Lambda, \\ 1 - y/2 & \text{otherwise} \end{cases}$$

where $\Lambda = [0,1] \cap \{y \in \mathbb{Q}, \sqrt{y} \notin \mathbb{Q}\}$. In particular we have $f(\widetilde{A})(0.5) = \sup\{0.75, \sqrt{0.125}\} = 1 \notin \{0.75, \sqrt{0.125}\}$. Thus the condition of the corollary is not fulfilled and therefore we conclude that the images of the α -cuts are not the α -cuts of the image. In order to confirm this statement, we can compute directly $f(A_{0.75})$ and $[f(\widetilde{A})]_{0.75}$. We obtain

$$f(A_{0.75}) = f([0.75, 1] \cap \mathbf{Q}) = [0, 0.5] \cap \mathbf{Q},$$

$$f(\widetilde{A})_{0.75} = ([0, 0.5] \cap \mathbf{Q}) \cup A \neq f(A_{0.75}).$$

Case 1.2: The function $f: X \to Y$ is defined by

$$f(x) = \begin{cases} 2x & \text{if } x \leq 0.5, \\ 2(1-x) & \text{if } x > 0.5. \end{cases}$$

It is easy to check that

$$f(\widetilde{A})(y) = \sup\left\{\frac{y}{2}, 1 - \frac{y}{2}\right\} = \max\left\{\frac{y}{2}, 1 - \frac{y}{2}\right\}.$$

The condition of Corollary 1 is fulfilled and therefore the images of the α -cuts coincide with the α -cuts of the image. This fact may be confirmed by means of a direct determination of the two subsets.

Example 2. In this example the sets X,Y are the same as in Example 1, the lattice (L, \preceq) is the family of the maps from [0,1] to [0,1] endowed with the usual ordering between functions (we are dealing with second-order subsets of X and Y); this means that the value of the membership function at a point x is a function: $\widetilde{A}(x) = \varphi_x : [0,1] \to [0,1]$. The map f is the same of Example 1, case 2, that is

$$f(x) = \begin{cases} 2x & \text{if } x \leq 0.5, \\ 2(1-x) & \text{if } x > 0.5. \end{cases}$$

Case 2.1: The fuzzy set \widetilde{A} is given by (see Fig.1)

$$\widetilde{A}(x) = \varphi_x(t) = \min \left[1, \frac{1}{1-x}(1-t)\right].$$

$$[f(\widetilde{A})](y) = \sup \left\{ \widetilde{A}\left(\frac{y}{2}\right), \widetilde{A}\left(1 - \frac{y}{2}\right) \right\} = \widetilde{A}\left(1 - \frac{y}{2}\right)$$
$$= \max \left\{ \widetilde{A}\left(\frac{y}{2}\right), \widetilde{A}\left(1 - \frac{y}{2}\right) \right\},$$

because it is evident that $1 - y/2 \ge y/2 \ \forall y \in [0, 1]$. Moreover $x' < x'' \Rightarrow \widetilde{A}(x') \le \widetilde{A}(x'')$. We may take as an example the l^* -cut corresponding to second-order fuzzy value $l^*(t) = 1$ if $t \in [0, 0.6]$, $l^*(t) = 4-5t$ if $t \in [0.6, 0.8]$ and $l^*(t) = 0$ if $t \in [0.8, 1]$ (Fig. 2). It can be checked, without any difficulty, that $[f(\widetilde{A})]_{l^*} = \{y \mid f[\widetilde{A}](y) \succeq l^*\} = \{y \mid \widetilde{A}(1-y/2)\} = [0, 0.8]$, and $f(A_{l^*}) = \{y = f(x) \mid x \in A_{l^*}\} = \{y = f(x) \mid x \in [0.6, 1]\} = [0, 0.8]$.

Fig. 2.

Fig. 3.

Case 2.2: The values A(x) are the functions $\varphi_x(t)$ represented graphically by isosceles triangles of the same shape (eventually cut off at the walls x = 0 and x = 1), with the base of width b = 0.2 centered on point x (see Fig. 3).

It is easy to check that the fuzzy value $[f(\widetilde{A})](y) = \sup\{\widetilde{A}(y/2), \widetilde{A}(1-y/2)\}$ (see Fig. 4) does not belong to the set $\{\widetilde{A}(y/2), \widetilde{A}(1-y/2)\}$ unless y=1. Therefore in general the upper bound is not a maximum and we do not apply Corollary 1 to obtain $[f(\widetilde{A})]_l$. As an example let us consider the subsets $f(A_l)$ and $[f(\widetilde{A})]_l$ corresponding to the fuzzy value $l \in L$ represented by the isosceles triangle with height h=0.2 centered on point 1/2 and base width $\beta=0.3$ (see Fig. 5).

Fig. 4.

Fig. 5.

It is easy to check that $A_l = \emptyset$ and therefore $f(A_l) = \emptyset$. On the other hand, we can recognize with straightforward computations, that $[f(\widetilde{A})]_l$ contains all the crisp values y in the interval [0.84, 0.90] (see Fig. 5).

We can observe that in Example 1 the equality between $[f(\widetilde{A})]_l$ and $f(A_l)$ depends on the form of the function f, whereas in Example 2 it depends on the structure of the L-fuzzy subset \widetilde{A} .

References

- [1] H.T. Nguyen, A note on the extension principle for fuzzy sets, J. Math. Anal. Appl. 64 (1978) 369-380.
- [2] L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, *Inform. Sci.* 8 (1975) 199-249.