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Abstract

Let f (E,S ) be the image of a pair of fuzzy subsets constructed by applying Zadeh’s (1975) extension principle to a
function of two variables. Nguyen (1973) gave a necessary and sufficient condition for the a-cuts of f(R,S) to be equal to
the crisp images of the a-cuts of R,S. Here we give a simplified proof of this theorem which also holds in a more general
context: particularly for second-order fuzzy subsets. © 1998 Elsevier Science B.V.
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1. The compatibility result

Let (L, <) be a complete lattice with minimum
and maximum elements denoted respectively by m
and M, and let Z;(X) be the family of L-fuzzy
subsets of the space X, that is the family of maps (4)
from X to L.Foreach /€ L the [-cut of 4 is the
crisp subset 4; = {x € X |4(x) = I}

Definition 1. Let {4} |/ € L} be a nested family of
crisp subsets of X (in the sense that //,/" ¢ L,I' <
I" = A3, 2A4;,). We say that {47} generates (is a
generator of) the fuzzy subset A if

A(x) = sup{l|x e 4;}. 8}
Proposition 1. It is evident that the class {4} of the

I-cuts is a { canonical ) generator of A, and moreover,
if {43} is another generator of A. then A} CA;

* Corresponding author.

Infactif x € 4} then r % sup{/|x € 4]} = A(x),
and therefore x € 4,.

Proposition 2. 4 necessary and sufficient condition
for A} = A; is the following:

sup{/|x € 47} = max{l|x € 4]} )

(a) (Necessity) A] = A; = sup = max. Suppose
Z(x) = t. Then x € 4, and therefore x € 4;. Since
x € A7 we have t < Z(x), and since E(x) =17 we
have ¢ = max{/|x € A7}. Thus the necessity of the
condition is proved.

(b) (Sufficency) sup = max = Ay = A4,. We al-
ready know that AF C4,. Now we will prove that
A, C Ay, Suppose x € A;; then Z(x) = p >t
But A(x) = sup{l|x € A7} = max{l|x € 4]}
(by assumption), and therefore x € Aj. Since
A4, C A7 (because p x f) we also have x €
47 and then the sufficiency of the condition is
proved.
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Let f beamap from X to Y andlet f (74)
be the L-fuzzy set induced on ¥ by A, via Zadeh’s
extension principle [2], that is

sup I(y) if v e f(X),
f (A W)= { otherwise, 3)
where 1(y) = {4(x)] f(x) = y}.

Proposition 3. The family {f(4;)} of the images
of the I-cuts is a generator of f(4).

In order to prove this result le: f(y) and y(y) be
defined as follows:

B(y) = f(A)»), (4)
v Jsup R(y) ifR(y) #0),
)= { m otherwise. )

where R(y)={l € L|y € f(A4;)}. We have to prove
that

B(y)=y(y) (6)

Since 4,, = X itis easy to check that y & f(X)
iff R(y)=90.Infact,if y & j(X) = f(dn), then
y & f(A4;) VI (because A; CX); therefore R(y) =
{l|y € f(4;)} = 0. On the other hand, if R(y) =0
then y & f(4;) Vi, and in particular y &€ f(4,) =
f(X). Thus equality (6) holds in this case. What we
have to do is then to prove that, when y € f(X) and
R(y) # 0, we have
~ {f(4))} is a nested family in the sense of Defini-

tion 1 [this is quite evident because / =X n =>

Ar 24n = f(41) 2 f(4n)],

— Eq. (6) holds.
(a) y(») X B(y). If a € R(y), then by definition

y € f(Ay). Therefore 3 X € A, such that f(X) =

y and A(X) = o (because X & A,). Then we have

o= AEF) < sup{d(x)|f(x) =y}

= sup/(y) = f(»)-

So we proved that B(y) is larger than all values o €
R(y). Therefore B(y) = sup R(y) = »(»).

(b) 7(») = B(»). Let us consider an element ¢ €
1(y). By definition there exists a point x* € X' such
that f(x*) =y and A(x ) = t thatis x* € 4,. This

means that y € f(4,). Therefore ¢ € R(y). So we
proved that /() CR(y) and consequently

B(y) = sup I(y) = sup R(y) = y(»).
Clearly (a) and (b) imply equality (6).

Corollary 1. sup{Z(x) f(x) = ¥y} = max{Z(x) |
f(x)=y} isa necessary and sufficient condition in
order to have [f(A); = f(A4)).

The proof is an immediate consequence of Propo-
sitions 2 and 3. In fact, we can use Proposition 3 to
deduce that {f(A4;)} is a generator of f(A4). Thus,
by using Proposition 2, we obtain the thesis.

Corollary 2 (Nguyen’s result). If f(u,v) is a func-
tion of two variables defined on U x V and R,S
are two fuzzy subsets of U and V, then we have

[FR,S)) = f(RS)
< sup{min[R(x), S(v)] | f(1,0) = y}
= max{min[R(w), S(v)] | f(u,v) = »}. (7)

In order to prove this result, it is sufficient to apply
Corollary 1 to the case where X = U xV,4 = RxS,
with R € P#(U), S e @V)and (R x S)(u,v)
mm[R(u) S(v)] It is easy to recognize that (R x §); =
(R;x8)) [mln{R(u) S(v)} =1 Ru) = 1,5@) = 1.
Nguyen’s theorem follows immediatly.

It is evident that the same result also holds if we
apply the extension principle to a function of several
variables, i.e. if X = Uy x Uy x --- x Up,.

Corollary 3. Nguyen's compatibility result also
holds for second-order fuzzy sets.

This descends from the fact that the family L of
the functions from [0,1] to [0, 1], equipped with the
order relation f <X g & f(x)<gx)¥x €[0,1],is a
complete lattice.

2. Two examples

We will show here two examples which refer to
Corollary 1. We will point out that the existence or the
absence of the condition “sup”="max” may depend
either on the subset 4 or on the function f.
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Example 1. Let (L = [0,1], %) be tae lattice defined
by
-r=1, 0=z¢,
—if x,y are rational, then x < y <= x<y,
—if x,y are irrrational, then x <X y <= x<y,
—if x isrational and y is irrational (or vice-versa),
then x and y are not comparable.

It is easy to check that

Vo= /1 if x and y are not comparable,
Y= | max(x,y) otherwise,
XAy= {0 if x and y are not comparable,

| min(x, y) otherwise

In this example both spaces X and Y _are the
interval {0, 1] and the subset 4 is givenby A(x) = x.
Note the difference between the two x’s appearing in
this equality; although they are the same number, the
X in Z(x) is a point in the space X, whereas the x
on the right-hand side is a membership value.

Case 1.1: The function [ : X — Y is defined by

4x? if x<0.5,

/) = {2(1—x) if x> 0.5.

It is easy to check that

1 if y e 4,
1 — y/2 otherwise ,

FA) = {

where A = [0,1]1N{y € R, \/y € Q}. In particu-
lar we have f(4)(0.5) = sup{0.75,+/0.125} = 1 ¢
{0.75,+/0.125}. Thus the condition of the corollary is
not fulfilled and therefore we conclude that the images
of the a-cuts are not the a-cuts of the image. In or-
der to confirm this statement, we can compute directly
f(Ap7s5) and [f(4)]p7s. We obtain

f(dozs) = f([0.75,11NQ) = [0,0.5]1N D,
f(@s = (10,0510 RYUA # f(Aozs) .

Case 1.2: The function f :X — Y is defined by

2x if x<0.5,

J&) = {2(1—x) if x > 05.

It is easy to check that

f(Z)(y) = sup{%,l—%} = max{%,l—%}.

A (0.25)
| \
\
I I
0.25 0.75

Fig. 1.

The condition of Corollary 1 is fulfilled and there-
fore the images of the a-cuts coincide with the a-cuts
of the image. This fact may be confirmed by means
of a direct determination of the two subsets.

Example 2. In this example the sets X,Y are the
same as in Example 1, the lattice (L, <) is the family
of the maps from [0,1] to [0,1] endowed with the
usual ordering between functions (we are dealing with
second-order subsets of X and Y); this means that
the value of the membership function at a point x is
a function: A(x) = ¢, : [0,1] — [0,1]. The map f
is the same of Example 1, case 2, that is

2 if x<05,
I = {2(1—;:) if x > 05.

Case 2.1: The fuzzy set A is given by (see Fig.1)

- 1
A(x) = @x(t) = min [1, — —t)] .

e =sw {4(2).3(1-2)} =4 (1-2)

—nec (3(3) (- 2)}

because it is evident that 1 — y/2>y/2 Vy € [0,1].
Moreover x' < x” = A(x") < A(x"). We may take
as an example the /*-cut corresponding to second-
order fuzzy value I*(¢) = 1 if t € [0,0.6] , I*(¢) =
4-5¢if ¢ € [0.6,0.8] and [*(¢) = 0if ¢ € [0.8,1]
(Fig. 2). It can be checked, without any difficulty, that
(D) =y | A = '} = {y[A(1 —y/2)} =
[0,0.8],and f(4di-) ={y=f)|xedr}={y=
f(x)|x € [0.6,11} = [0,0.8].
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Fig. 2.
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Fig. 3.

Case 2.2: The values Z(x) are the functions ¢(r)
represented graphically by isosceles triangles of the
same shape (eventually cut off at the walls x = 0 and
x = 1), with the base of width » = 0.2 centered on
point x (see Fig. 3). _

It is easy to check that the fuzzy value [f(4)](y) =
sup{4(y/2),4(1 — y/2)} (see Fiz. 4) does not belong
to the set {/~4(y/2),1~4(1 —y/2)} unless y = 1. There-
fore in general the upper bounc is not a maximum
and we do not apply Corollary | to obtain [f(4)];.
As an example let us consider the subsets f(4;) and
[f(4)]; corresponding to the fuzzy value / € L rep-
resented by the isosceles triangle with height 2 = 0.2
centered on point 1/2 and base width f =03 (see
Fig. 5).

Fig. 4.

AN

Fig. S.

It is easy to check that 4; = (} and therefore
f(4;) = 0. On the other hand, we can recognize with
straightforward computations, that {f(4)]; contains
all the crisp values y in the interval [0.84,0.90] (see
Fig. 5).

We can observe that in Example 1 the equality be-
tween [f(4)]; and f(4;) depends on the form of
the function f, whereas in Example 2 it depends on
the structure of the L-fuzzy subset A.
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