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Some definitions

Xt = (Xp1,. .., Xitg) rv., g rain stations:

vy €{0,..., K}oray € RT
Ct € {1,...,m} hidden process

Xl:T L= (Xl, ce ,XT), Cl:T — (Cl, o
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Some definitions

Xt = (Xp1,. .., Xitg) rv., g rain stations:

vy €{0,..., K}oray € RT

Ct € {1,...,m} hidden process

X117 =(Xy,..., Xp), Cr.p=(Cq,...,Cp)
MacDonald and Zucchini (1997)

c L(Xt| X1:4—1,C14) = L(X¢|Cy)

. C't homogeneous, first—order Markov Chain
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Some definitions

Xt = (Xp1,. .., Xitg) rv., g rain stations:

vy €{0,..., K}oray € RT

Ct € {1,...,m} hidden process

X7 =(X1,...,X7), Cr.p=(Cq,...,Cp)

 L(Xy| X101, Crp) = LIX[CY)
. C't homogeneous, first—order Markov Chain

 L(X¢|C) = ]1; £(X+]|Ct) and DOES NOT DEPEND ON ¢
Zucchini and Guttorp (1991)
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Interpretation

The main interest of HMMs lies in the underlying correspondence be-
tween the hidden states and the concept of discrete weather states.
Instead of explicity defining the weather states, HMMs allow to define
them according to observed data. Therefore, an explicit mechanism for

simulating the phenomenon is provided.
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Cases of interest

Rainfall occurrences:

. 0  DRY day at station ¢
=11 WETday ...

Rainfall intensities:

0  DRY day at station ¢

1 WEAK rainfall ...
Xy = |

K VERY STRONG rainfall ...

Rainfall amounts:

Xt >0
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Cases of interest: distributions

Rainfall occurrences:

0 DRY da
Xy = { | WET da}ufy = P(Xy; =1|Cr = ¢) = pic

Rainfall intensities:

0  DRY day at station ¢

1 WEAK rainfall ...
Xy = |

K VERY STRONG rainfall ...

Rainfall amounts:

Xt >0
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Cases of interest: distributions

Rainfall occurrences:

0 DRY da
Xy = { | WET da}ufy = P(Xy; =1|Cr = ¢) = pic

Rainfall intensities:

0  DRY day at station ¢

1 WEAK rainfall ...
Xy = |

K VERY STRONG rainfall ...

Rainfall amounts:

X >0 = L(Xy|Cr = ¢) = wie 0o + (1 — wie) F(-|0;c)
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The study area

see the map

Central-East Sardinia; 4 stations (Arzana, Gairo, Jerzu and Villagrande).
Data: standard 30 year period, season from September to January =
4437 data.

Available data: daily rainfall and temperature.

Unfortunately temperature does not predict rainfall ...
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Estimation and selection model

The numerical maximization of log—likelihood is essentially based on an
EM algorithm. The MVNHMM toolbox (Kirshner, 2005) is available on

line at the web site

http://www.datalab.uci.edu/software/mvhmm /

The Bayesian Information Criterion (BIC) can be used to determine the

number of states. Cross—validation arguments can be used too.
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Estimated model, |

X4|Cr=c ~ wj. o0+ (1 — wi.)Gammal( - |ve, Bic)

Estimated Dirac’'s weights

stations

C=1 C=2 C=3 C=4 (C=H

Arzana
Gairo

Jerzu
Villagrande

0.08
0.24
0.08
0.15

0.21
0.46
0.16
0.62

0.04 0.99 0.75
0.06 0.99 0.75
0.02 0.98 0.66
0.07 0.999 0.94

T

0.10

0.18

0.03 0.51 0.18
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Estimated model, I
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Estimated model, Il

Estimated State Sequence (Viterbi's algorithm):

the most likely sequence of states associated with data.

C=1 C=2 C=3 (=4 (C=5
Frequencies 154 259 4.1 832 243
Mean daily rainfall | 12.6 2.6 58.8 0.01 0.55

Mean daily rainfall conditioned to C=3
Arzana Gairo Jerzu Villagrande
644 57.7 50.0 70.8
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Goodness of fit

NB: empirical frequencies are usually matched by the corresponding

estimates.
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Goodness of fit

Comparison of empirical and estimated distribution function. Note that

here observations are dependent (Altman, 2004).
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Some comments

. Boostrap can be used for determining confidence intervals
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Some comments

. Boostrap can be used for determining confidence intervals

. Spatial correlation has to be considered
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Spatial correlation

. Spatial correlation has to be considered

(Hughes et al., 1999): autologistic model
P(X4|Ct = ¢) oc exp ( q 1 QeiT; T Z 160@]331523315])

Bertinoro, ABS06



Some comments

. Boostrap can be used for determining confidence intervals
. Spatial correlation has to be considered
« Il The estimated model does not provide good predictions !l =

- other atmospheric data

- downscaling (Hughes et al., 1999)
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Predictions

P(Xt+1,A7°zana < red line|X1) = 0.95
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Downscaling

o Il The estimated model does not provide good predictions !ll =

- Downscaling of GCM

(Hughes et al., 1999)

P(Cy =1i|Cr—1 = 7, X4)

P(Cy =i|Ci—1 = j)P(X3|Ci—1 = 3, Cr = 1) = v N(, V)
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Some comments

. Boostrap can be used for determining confidence intervals
. Spatial correlation has to be considered
« Il The estimated model does not provide good predictions !l =

- other atmospheric data

- downscaling (Hughes et al., 1999)

. Transformation of data to improve the fit
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Transformation to improve de fit

ESTI MATED

ESTI MATED

0.7 0.8 0.9
OBSERVED

0.7 0.8 0.9
OBSERVED

Real data

Transformed data
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Some comments

. Boostrap can be used for determining confidence intervals
. Spatial correlation has to be considered
« Il The estimated model does not provide good predictions !l =

- other atmospheric data

- downscaling (Hughes et al., 1999)
. Transformation of data to improve the fit

. Bayesian Inference
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