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OUTLINE OF THE COURSE

• Introduction to Bayesian Statistics

• Introduction to Adversarial Risk Analysis

• Discrete Simultaneous Games and Modelling Opponents

• Example: Auctions

• Sequential Games

• Example: Somali Pirates

• My works

– Adversarial Hypothesis Testing

– Batch Acceptance

– Classification

– Software Release
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ALL BAYESIANS IN DAILY LIFE?
Interest in Milano or not?

• Prior knowledge

– What is Milano? City, cookie, meat, car?

– Where is the city of Milano?

– Fashion and football

• Data collection

– Book on snorkeling activities

– Tour operator catalogue

– City of Milano official website
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ALL BAYESIANS IN DAILY LIFE?

• Posterior knowledge

– No snorkeling: closest beach at 150 kms!

– Probably no tour found in the catalogue

– Leonardo’s Last Supper; Michelangelo, Raffaello, Mantegna, etc.; Duomo (cathe-
dral); Sforza Castle; Canals (Navigli) and nightlife; Via Sarpi (Chinatown); etc.

• Forecast:

– Will I enjoy Milano or not?

– Cost and time to get there

• Decision: To go or not to go?

– Interest in the place

– Distance and cost for travel, lodging and meals

– Italian language (but English understood by many)
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BAYES THEOREM

• Patient subject to medical diagnostic test (P or N ) for a disease D

• Sensitivity .95, i.e. P(P |D) = .95

• Specificity .9, i.e. P(PC|DC) = P (N |DC) = .9

• Physician’s belief on patient having the disease 1%, i.e. P(D) = .01

– Knowledge about that patient

– Knowledge about people with similar characteristics (age, gender, etc.)

– Knowledge about the population in an area

– Other sources of knowledge or uninformative guess

• Positive test ⇒ P(D|P )?
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BAYES THEOREM

P(D|P ) =
P(D

⋂
P )

P(P )
=

P(P |D)P(D)

P(P |D)P(D) + P(P |DC)P(DC)

=
.95 · .01

.95 · .01+ .1 · .99
= .0875

Positive test updates belief on patient having the disease:
from 1% to 8.75%

Prior opinion updated into posterior one

If P(D) = .1 ⇒ P(D|P ) = .5135

If P(D) = .2 ⇒ P(D|P ) = .7037

6



BAYES THEOREM

• Partition {A1, . . . , An} of Ω and B ⊂ Ω : P(B) > 0

P(Ai|B) =
P(B|Ai)P (Ai)∑n

j=1 P(B|Aj)P (Aj)

• X r.v. with density f(x|λ), prior π(λ)

⇒ posterior π(λ|x) =
f(x|λ)π(λ)

∫
f(x|ω)π(ω)dω
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A SHORT HISTORY OF BAYESIAN STATISTICS
• Bayesian statistics strongly relies on the use of Bayes Theorem

• The idea of Bayes Theorem goes back to James Bernoulli in 1713 but there was no
mathematical structure yet

• Reverend Thomas Bayes died in 1761

• Richard Price, Bayes’s friend, published Bayes’s paper on inverse probability in
1763, which was about binomial data and uniform prior

• In 1774 Laplace gave more general results, probably unaware of Bayes’s work

• Jeffreys ”rediscovered” Bayes’s work in 1939

• Bruno de Finetti and Jimmy Savage set the foundations of the Bayesian approach

• In early 90’s Metropolis simulation method was ”ridiscovered” by Gelfand and Smith

• Since then MCMC (Markov chain Monte Carlo) and other simulation methods were
developed and Bayesian approach became very popular
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ASSESSMENT OF PRIOR PROBABILITIES
Bayesian Statistics relies on subjective assessment of probabilities, but have a look at this
example:

• T= person having a tumor in his/her life

• I= person having an infarction in his/her life

• Are these probability assessments right or not?

1. P(T
⋃

I) = .2, P(T ) = .3, P(I) = .05, P(T
⋂

I) = .1

2. P(T
⋃

I) = .3, P(T ) = .2, P(I) = .2, P(T
⋂

I) = .15

3. P(T
⋃

I) = .3, P(T ) = .2, P(I) = .2, P(T
⋂

I) = .1

• Assessments should comply with probability rules
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ASSESSMENT OF PRIOR PROBABILITIES

• P (A): Probability one of us was born on a given day, say May, 1st

• n people ⇒ P (A) = 1− (364/365)n

•

n = 10 ⇒ P (A) = 0.027
n = 50 ⇒ P (A) = 0.128

n = 100 ⇒ P (A) = 0.240
n = 200 ⇒ P (A) = 0.422
n = 300 ⇒ P (A) = 0.561

• Therefore, what is your opinion about P (A)?
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ILLUSTRATIVE EXAMPLE: FREQUENTIST APPROACH

Light bulb lifetime ⇒ X ∼ E(λ) & f(x;λ) = λe−λx x, λ > 0

• Sample X = (X1, . . . , Xn), i.i.d. E(λ)

• Likelihood lx(λ) =
∏n
i=1 f(Xi;λ) = λne−λ

∑n
i=1Xi

• MLE: λ̂ = n/
∑n

i=1Xi, C.I., UMVUE, consistency, etc.

What about available prior information on light bulbs behavior?
How can we translate it? ⇒ model and parameter
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ILLUSTRATIVE EXAMPLE: BAYESIAN APPROACH

Light bulb lifetime ⇒ X ∼ E(λ) & f(x;λ) = λe−λx x, λ > 0

• Sample X = (X1, . . . , Xn), i.i.d. E(λ)

• Likelihood lx(λ) =
∏n
i=1 f(Xi;λ) = λne−λ

∑n
i=1Xi

• Prior λ ∼ G(α, β), π(λ) =
βα

Γ(α)
λα−1e−βλ

• Posterior π(λ|X) ∝ λne−λ
∑n

i=1Xi · λα−1e−βλ

⇒ λ|X ∼ G(α+ n, β +
∑n

i=1Xi)

Posterior distribution fundamental in Bayesian analysis
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CONJUGATE PRIORS
• We just saw that a gamma prior on the parameter of an exponential model leads to

a gamma posterior

• ⇒ The gamma distribution is a conjugate prior for the exponential model

• Does conjugacy occur always? Unfortunately not and simulation methods, e.g.
MCMC (Markov chain Monte Carlo), are needed to get samples from the posterior
distribution

• There are some relevant cases of conjugacy and we will see some of them:

– Beta prior conjugate w.r.t. Bernoulli, binomial, geometric models

– Dirichlet prior conjugate w.r.t. multinomial model

– Gamma prior conjugate w.r.t. exponential, Poisson models

– Gaussian prior conjugate w.r.t. Gaussian model with fixed variance/covariance
matrix and unknown mean

– Gaussian-Inverse gamma prior w.r.t. univariate Gaussian model with unknown
mean and variance
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CONJUGATE PRIOR FOR BINOMIAL

• Binomial data (x ”successes” in n trials), with P (success) = θ

⇒ lx(x|n, θ) =
(n
x

)
θx(1− θ)n−x

• Beta prior Be(α, β): π(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1, 0 < θ < 1, α, β > 0

• ⇒ posterior π(θ|x, n) ∝ θx(1− θ)n−x · θα−1(1− θ)β−1 ∝ θα+x−1(1− θ)β+n−x−1

• ⇒ θ|x, n ∼ Be(α+ x, β + n− x)

• Note that the result is proved without using the constant values

• It is worth trying with the following models:

– Bernoulli: f(x|θ) = θx(1− θ)1−x, x = 0,1

– Geometric: (1− θ)θx, x nonnegative integer
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CONJUGATE PRIOR FOR GAUSSIAN

• X1, . . . , Xn ∼ N (µ, σ2)

• Mean/median µ ∈ ℜ unknown and variance σ2 > 0 known

• X = (X1, . . . , Xn)

• Likelihood:

L(X|µ) =
n∏

i=1

1√
2πσ

e−(Xi−µ)2/(2σ2)

=
1

(2πσ2)n/2
e−
∑n

i=1
(Xi−µ)2/(2σ2)

• Prior: µ ∼ N (µ0, τ2) ⇒ π(µ) =
1√
2πτ

e−(µ−µ0)2/(2τ 2)
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CONJUGATE PRIOR FOR GAUSSIAN

• Posterior:

π(µ|X) ∝ e−
∑n

i=1
(Xi−µ)2/(2σ2) · e−(µ−µ0)2/(2τ 2)

∝ e−(nµ2−2µ
∑n

i=1
Xi)/(2σ2) · e−(µ2−2µ0µ)/(2τ 2)

∝ e−{µ
2(n/σ2+1/τ 2)−2µ(

∑n

i=1
Xi/σ2+µ0/τ 2)}/2

∝ exp

{
−

1

2(n/σ2 +1/τ2)−1

[
µ2 − 2µ

∑n
i=1Xi/σ2 + µ0/τ2

n/σ2 +1/τ2

]}

⇒ µ|X ∼ N
(∑n

i=1Xi/σ2 + µ0/τ2

n/σ2 +1/τ2
,

1

n/σ2 +1/τ2

)

• Prior mean: E(µ) = µ0

• MLE:
∑n

i=1Xi

n

• Posterior mean:
∑n

i=1Xi/σ2 + µ0/τ2

n/σ2 +1/τ2
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PARAMETER ESTIMATION - DECISION ANALYSIS
• Loss function L(λ, a), a ∈ A action space

• Minimize Eπ(λ|X)L(λ, a) =
∫
L(λ, a)π(λ|X)dλ w.r.t. a

⇒ λ̂ Bayesian optimal estimator of λ

– λ̂ posterior median if L(λ, a) = |λ− a|

– λ̂ posterior mean Eπ(λ|X)λ if L(λ, a) = (λ− a)2

Eπ(λ|X)L(λ, a) =

∫
(λ− a)2π(λ|X)dλ

=

∫
λ2π(λ|X)dλ− 2a

∫
λπ(λ|X)dλ+ a2 · 1

=

∫
λ2π(λ|X)dλ− 2aEπ(λ|X)λ+ a2

–
∂Eπ(λ|X)L(λ, a)

∂a
= 0 ⇔ a = Eπ(λ|X)λ

–
∂2Eπ(λ|X)L(λ, a)

∂2a
= 2 ⇒ Eπ(λ|X)λ minimum
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PRIOR AND DATA INFLUENCE
• Sample (X1, . . . , Xn) from X ∼ E(λ) with prior λ ∼ G(α, β)

• Posterior mean: λ̂ =
α+ n

β +
∑

Xi

• Prior mean: λ̂P =
α

β
(and variance σ2 =

α

β2
)

• MLE: λ̂M = n/
∑

Xi

• α1 = kα and β1 = kβ ⇒ λ̂1P = λ̂P and σ2
1 = σ2/k

• Posterior mean: λ̂ =
kα+ n

kβ +
∑

Xi

• k → 0 ⇒ prior variance → ∞ ⇒ λ̂ → n/
∑

Xi, i.e. MLE (prior does not count)

• k → ∞ ⇒ prior variance → 0 ⇒ λ̂ → λ̂P , i.e. prior mean (data do not count)

• n → ∞ ⇒ λ̂ ∼
n∑
Xi

, i.e. MLE (prior does not count)
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PRIOR CHOICE

Where to start from?

• X ∼ E(λ)

• f(x|λ) = λ exp{−λx}

• P (X ≤ x) = F (x) = 1− S(x) = 1− exp{−λx}

⇒ Physical properties of λ

• EX = 1/λ

• V arX = 1/λ2

• h(x) =
f(x)

S(x)
=

λ exp{−λx}
exp{−λx}

= λ (hazard function)
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PRIOR CHOICE

Possible available information

• Exact prior π(λ) (???)

• Quantiles of Xi, i.e. P (Xi ≤ xq) = q

– Results from previous experiments (e.g. 75% of light bulbs had failed after 2
years of operation ⇒ 2 years is the 75% quantile of Xi)

• Quantiles or moments of λ, i.e. P (λ ≤ λq) = q or Eλk = ak

• Most likely value and upper and lower bounds

• Expected value of λ and confidence on such value (mean and variance)

– Eλ = µ =
α

β
and V arλ = σ2 =

α

β2
⇒ α =

µ2

σ2
and β =

µ

σ2

• None of them
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PRIOR CHOICE
Which prior?

• λ ∼ G(α, β) ⇒ f(λ|α, β) = βαλα−1 exp{−βλ}/Γ(α) (conjugate)

• λ ∼ LN (µ, σ2) ⇒ f(λ|µ, σ2) = {λσ
√
2Π}−1 exp{−(logλ− µ)2/(2σ2)}

• λ ∼ GEV(µ, σ, θ) ⇒ f(λ) = 1
σ

[
1+ θ

(
λ−µ
σ

)]−1/θ−1

+
exp

{
−
[
1+ θ

(
λ−µ
σ

)]−1/θ

+

}

• λ ∼ T (l,m, u) (triangular)

• λ ∼ U(l, u)

• λ ∼ W(µ, α, β) ⇒ f(λ) = β
α

(
λ−µ
α

)β−1
exp{−

(
λ−µ
α

)β
}

• . . .
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CREDIBLE INTERVALS

• In Bayesian statistics the parameter λ is considered a r.v. and it is possible to com-
pute the posterior probability P(λ ∈ A|X) for a measurable set A

• ⇒ Credible set, as a counterpart of the frequentist confidence set, but with very
different meaning

• If the set is an interval, then we call it credible interval at 100y%, if its posterior
probability is y

• We are interested also in the highest posterior density (HPD) sets, which are the
ones with the smallest Lebesgue measure among those with a given posterior prob-
ability

• Light bulb: P(λ ≤ z|X) =

∫ z

0

(β +
∑

Xi)α+n

Γ(α+ n)
λα+n−1e−(β+

∑
Xi)λdλ
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CREDIBLE INTERVALS
• One observation X ∼ N (µ,1)

• Prior µ ∼ N (0,1)

• Posterior
π(µ|x) ∝ e−(x−µ)2/2 · e−µ2/2 ∝ e−(µ2−xµ) ∝ exp{

1

2 · 1/2
(µ− x/2)2}

⇒ µ|x ∼ N (x/2,1/2)

• Z =
µ− x/2√

1/2
∼ N (0,1)

• Quantiles Z.975 = 1.96 and Z.025 = −1.96

• ⇒ P (Z.025 ≤ Z ≤ Z.975) =

(
−1.96 ≤

µ− x/2√
1/2

≤ 1.96

)
= .95

• ⇒
(
x/2− 1.96

√
1/2, x/2+ 1.96

√
1/2

)
credible interval at 95% for µ
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HYPOTHESIS TESTING

• H0 : λ ∈ Λ0 vs. H1 : λ ∈ ΛC
0 , where C denotes the complement set

• Priors: P(H0) = P(λ ∈ Λ0) = 1− P(λ ∈ ΛC
0 ) = 1− P(H1)

• Sample X ⇒ posteriors P(H0|X) = 1− P(H1|X)

• There are many problems associated with the frequentist approach to hypothesis
testing which can be addressed properly in a Bayesian framework

– Bayesians have no need to know if either H0 or H1 is true but, treating λ as a
r.v., they can assess the probabilities of both hypotheses and decide based on
them

– Frequentists are unable to specify opinions about hypotheses, unlike Bayesians
with prior distributions on them

– Frequentists set significance levels a priori and decide based on them, unlike
Bayesians which get a posteriori the probability of an hypothesis and decide
based on it
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HYPOTHESIS TESTING

• One sided test: H0 : λ ≤ λ0 vs. H1 : λ > λ0

⇒ Reject H0 iff P(λ ≤ λ0|X) ≤ α, α significance level (e.g. α = 0.5)

• Two sided test: H0 : λ = λ0 vs. H1 : λ ̸= λ0

– Problems with P(λ = λ0|X)

– Do not reject if λ0 ∈ A, A 100(1− α)% credible interval

– Consider P([λ0 − ϵ, λ0 + ϵ]|X)

– Dirac measure: P(λ0) > 0 and consider P(λ0|X)
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PREDICTION

• After observing an i.i.d. sample X = (X1, . . . , Xn), what can we say about a next
observation Xn+1 from the same density f(X|λ)?

• We could consider the next observations Xn+1, . . . , Xn+j but we take j = 1 for
simplicity

• When considering observations over time we prefer to use the term forecast instead
of prediction (e.g., weather forecast)

• Given the sample X and the prior π(λ), then the posterior π(λ|X) is used to com-
pute the posterior predictive density (absolutely continuous case here) for Xn+1
f(Xn+1|X) =

∫
f(Xn+1|λ,X)π(λ|X)dλ =

∫
f(Xn+1|λ)π(λ|X)dλ

• Prior predictive densities can be used to compare model via Bayes factor (more later)

• Posterior predictive densities can be used to assess the goodness of fit of a model
through the prediction error, using part of the data to get the posterior and the re-
maining one to get predicted values (e.g. predicted posterior mean/median) and
compare them with actual ones
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PREDICTION

• Light bulb: Xn+1|λ ∼ E(λ), λ|X ∼ G(α+ n, β +
∑

Xi)

• Posterior predictive density for Xn+1

fXn+1
(Xn+1|X) =

∫ ∞

0
λe−λXn+1 ·

(β +
∑

Xi)α+n

Γ(α+ n)
λα+n−1e−λ(β+

∑
Xi)dλ

=
(β +

∑
Xi)α+n

Γ(α+ n)

∫ ∞

0
λα+n+1−1e−λ(β+

∑
Xi+Xn+1)dλ

=
(β +

∑
Xi)α+n

Γ(α+ n)

Γ(α+ n+1)

(β +
∑

Xi +Xn+1)α+n+1

= (α+ n)
(β +

∑
Xi)α+n

(β +
∑

Xi +Xn+1)α+n+1

• I found first the constant knowing that the density integrates to 1 and then I used the
property Γ(z +1) = zΓ(z)
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MODEL SELECTION
Compare M1 = {f1(x|θ1), π(θ1)} and M2 = {f2(x|θ2), π(θ2)}

• Bayes factor

⇒ BF =
f1(x)

f2(x)
=

∫
f1(x|θ1)π(θ1)dθ1∫
f2(x|θ2)π(θ2)dθ2

BF 2 log10BF Evidence in favor of M1

1 to 3 0 to 2 Hardly worth commenting
3 to 20 2 to 6 Positive

20 to 150 6 to 10 Strong
> 150 > 10 Very strong

• Posterior odds

⇒
P (M1|data)
P (M2|data)

=
P (data|M1)

P (data|M2)
·
P (M1)

P (M2)
= BF ·

P (M1)

P (M2)
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BAYESIAN ROBUSTNESS: MOTIVATING EXAMPLE

• X ∼ N (θ,1)

• Expert’s opinion on prior P : median at 0, quartiles at ±1, symmetric and unimodal

• ⇒ Possible priors include Cauchy C(0,1) and Gaussian N (0,2.19)

• Interest in posterior mean µC(x) or µN(x)

x 0 1 2 4.5 10
µC(x) 0 0.52 1.27 4.09 9.80
µN(x) 0 0.69 1.37 3.09 6.87

• Decision strongly dependent on the choice of the prior for large x

• Robust alternative: Posterior median w.r.t. posterior mean

• Range of posterior mean in class of priors compatible with expert’s opinions
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MARKOV CHAIN MONTE CARLO (MCMC)
• It is not always possible to get posterior distributions in closed form

• Use of Bayesian Statistics limited until early 90’s ”rediscovery” of MCMC

• The name MCMC is due to the Monte Carlo simulation applied to a Markov chain
whose stationary distribution is, under adequate conditions, the posterior distribution

• Gibbs sampling, the simplest MCMC, with simulation based on full posterior condi-
tional distributions, for each parameter given the others and the data

• Suppose the parameter is θ = (µ, τ) and the data are X, then the simulation is
based on N replications of the following steps, with i = 0, µ(0) = µ0 and τ (0) = τ0

1. µ(i+1) ∼ π(µ|τ (i), X)

2. τ (i+1) ∼ π(τ |µ(i+1), X)

3. i = i+1; if i ≤ N then go to 1

• The posterior distributions approximated by histograms of µ’s and τ ’s

• Posterior quantities can be computed, e.g. E(µ|X) = (1/N)
∑N

i=1 µ
(i)
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MARKOV CHAIN MONTE CARLO (MCMC)

• Sample X and parameter θ = (θ1, . . . , θn)

• Notation θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn), for i = 1, . . . , n

• Gibbs sampling used if π(θ|X) unavailable but all π(θi|θ−i, X), i = 1, . . . , n, are

• Consider Xi ∼ N (µ, τ), i = 1, . . . , n

• τ = 1/σ2 precision, X = (X1, . . . , XN), X =
∑N

i=1Xi/N sample mean

• Likelihood:
∏N

i=1

√
τ
2π
e−

τ

2
(Xi−µ)2

• Prior distribution: π(µ, τ) ∝ τa−1e−bτ : is it ”strange”?

• Posterior: ∝ τa+N/2−1e−τ(b+
∑N

i=1
(Xi−µ)2/2)

• µ|τ,X ∼ N (X,nτ) and τ |µ,X ∼ G(a+N/2, b+
∑N

i=1(Xi − µ)2/2)
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MARKOV CHAIN MONTE CARLO

• In words, Gibbs sampling consists of a ”sufficient” number of steps in which each
parameter θi is sequentially drawn from its full conditional distribution π(θi|θ−i, X),
where θ−i contains the values of θ1, . . . , θi−1 generated at the current step and those
of θi+1, . . . , θn generated at the previous step

• Algorithm

1. Set θ(0) = (θ(0)1 , . . . , θ(0)n ) and j = 0

2. Set j = j +1

3. For i = 1, . . . , n, draw θ(j)i from π(θi|θ(j)1 , . . . , θ(j)i−1, θ
(j−1)
i+1 , . . . , θ(j−1)

n , X)

4. If j < N (set a priori) then go back to (2)

5. ⇒ θ(j), j = 1, . . . , N , used to get a sample from the posterior distribution

• Some θ(j)’s might be discarded, e.g. initial ones (more later)
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MARKOV CHAIN MONTE CARLO *

• Consider a single observation (y1, y2) from a bivariate Gaussian with unknown

mean θ = (θ1, θ2) and known covariance matrix
(

1 ρ
ρ 1

)

• Uniform prior on θ: π(θ) ∝ c, c > 0

• ⇒ Posterior
(

θ1
θ2

)
|y ∼ N

((
y1
y2

)
,

(
1 ρ
ρ 1

))

• Although it is simple to draw directly from the joint posterior distribution of (θ1, θ2),
for the purpose of exposition we demonstrate the Gibbs sampler here

• Simulate (alternating) from known full conditional distributions

– θ1|θ2, y ∼ N (y1 + ρ(θ2 − y2),1− ρ2)

– θ2|θ1, y ∼ N (y2 + ρ(θ1 − y1),1− ρ2)

*Example from Gelman et al., Bayesian Data Analysis, Third Edition, freely available at
http://www.stat.columbia.edu/∼gelman/book/BDA3.pdf
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MARKOV CHAIN MONTE CARLO

• Take ρ = 0.8 and (y1, y2) = (0,0)

• ⇒ Posterior
(

θ1
θ2

)
|y ∼ N

((
0
0

)
,

(
1 0.8
0.8 1

))

• Four independent sequences starting at (±2.5,±2.5) to remove dependence on
initial point

• Sequences run until convergence to the posterior is achieved (more later on check-
ing for convergence)

• By convergence we mean that the drawn samples are from an approximating distri-
bution close to the posterior one (our target)

• Use of just part of the data, removing the initial ones since they might not be in the
approximating distribution (this operation is called burn-in)

• Sometimes one aims to reduce correlation between samples so that just 1 every m
is kept
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MARKOV CHAIN MONTE CARLO

This electronic edition is for non-commercial purposes only.

11.1. GIBBS SAMPLER 277

Figure 11.2 Four independent sequences of the Gibbs sampler for a bivariate normal distribution
with correlation ρ = 0.8, with overdispersed starting points indicated by solid squares. (a) First 10
iterations, showing the componentwise updating of the Gibbs iterations. (b) After 500 iterations,
the sequences have reached approximate convergence. Figure (c) shows the points from the second
halves of the sequences, representing a set of correlated draws from the target distribution.

other components of θ:
p(θj |θt−1

−j , y),

where θt−1
−j represents all the components of θ, except for θj , at their current values:

θt−1
−j = (θt

1, . . . , θ
t
j−1, θ

t−1
j+1, . . . , θ

t−1
d ).

Thus, each subvector θj is updated conditional on the latest values of the other components
of θ, which are the iteration t values for the components already updated and the iteration
t− 1 values for the others.

For many problems involving standard statistical models, it is possible to sample di-
rectly from most or all of the conditional posterior distributions of the parameters. We
typically construct models using a sequence of conditional probability distributions, as in
the hierarchical models of Chapter 5. It is often the case that the conditional distributions
in such models are conjugate distributions that provide for easy simulation. We present an
example for the hierarchical normal model at the end of this chapter and another detailed
example for a normal-mixture model in Section 22.2. Here, we illustrate the workings of
the Gibbs sampler with a simple example.

Example. Bivariate normal distribution
Consider a single observation (y1, y2) from a bivariate normally distributed population
with unknown mean θ = (θ1, θ2) and known covariance matrix

(
1 ρ
ρ 1

)
. With a uniform

prior distribution on θ, the posterior distribution is

(
θ1
θ2

)∣∣∣∣ y ∼ N

((
y1

y2

)
,

(
1 ρ

ρ 1

))
.

Although it is simple to draw directly from the joint posterior distribution of (θ1, θ2),
for the purpose of exposition we demonstrate the Gibbs sampler here. We need the
conditional posterior distributions, which, from the properties of the multivariate nor-
mal distribution (either equation (A.1) or (A.2) on page 582), are

θ1|θ2, y ∼ N(y1 + ρ(θ2 − y2), 1− ρ2)

θ2|θ1, y ∼ N(y2 + ρ(θ1 − y1), 1− ρ2).

The Gibbs sampler proceeds by alternately sampling from these two normal distribu-
tions. In general, we would say that a natural way to start the iterations would be
with random draws from a normal approximation to the posterior distribution; such

• Left: First 10 iterations for four independent sequences starting at (±2.5,±2.5)

• Center: After 500 iterations, the sequences have reached approximate convergence

• Right: The points from the second halves of the sequences, discarding the first 250
samples values of each sequence (burn-in)

• Often just one sequence is drawn but for longer time

• Note how the samples are around (0,0) and showing a strong positive correlation,
as expected knowing the exact joint posterior
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• In Gibbs sampling we assumed that it was always possible to get the full conditional
π(θi|θ−i, X) for all i’s but is not always the case

• Sometimes we know only π(θi|θ−i, X) ∝ q(θi|θ−i, X) where q(·) is not a density
function

• In this case we will use Metropolis-Hastings steps within Gibbs

• The Metropolis-Hastings algorithm allows to draw a value θ∗i from a proposal density
p(θi) and accept either it or θ(j−1)

i as θ(j)i with probabilities depending on both p and
q

• The proposal density for θ∗i could be chosen, e.g., either as the same for each itera-
tion or as dependent on the previous θ(j−1)

i
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• We already saw that running more than one simulation at the time and removing the

initial values should reduce the dependence on the initial values

• The proposal distributions are often chosen depending on the value at the previous
iteration, e.g. a Gaussian distribution centered at it, or independently from it, possibly
the same at all iterations, e.g. Gaussians with the same mean

• Many tools developed to check convergence of the sequence to the true distribution

• The simplest, graphical, tool to assess convergence is to check if the plot of the
sample mean stabilises as the iterations grow (if not, then no convergence)

• Given a sample θ(S+1), . . . , θ(N), with a burn-in of size S, then estimators of E(h(θ)|y)

are given by
∑N

j=S+1
h(θ(j))

N−S
, like

– E(θ|y) ≈
∑N

j=S+1
θ(j)

N−S

– P(θ ∈ A|y) ≈ #{θ(j)∈A}N
j=S+1

N−S
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In the first trace plot (Chain 1), there are no apparent anomalies. There seems to

be a mild serial correlation between successive draws and the chain seems to

explore the sample space many times.

In the second plot (Chain 2), the first part of the sample (until around )

looks very different from the remaining part. Most likely, the initial distribution and

the distributions of the subsequent terms of the chain were very different from the

target distribution, but then the chain slowly converged to the target distribution

(around ). We have Problem 1: a large chunk of the sample is drawn from

Markov Chain Monte Carlo (MCMC) diagnostics https://www.statlect.com/fundamentals-of-statistics/Markov-Chain-M...

7 di 14 09/10/2024, 12:39

• Trace plots are heuristic tools, widely used to check convergence of the MCMC

• They plot the values of each parameter for all the iterations

• They are ”good” when the plot keeps jumping within a set which denotes where the
posterior density is concentrated

• The trace plot in the figure is a good one, unlike the next ones

*Plots from www.statlect.com
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11.4. INFERENCE AND ASSESSING CONVERGENCE 283

Figure 11.3 Examples of two challenges in assessing convergence of iterative simulations. (a) In
the left plot, either sequence alone looks stable, but the juxtaposition makes it clear that they have
not converged to a common distribution. (b) In the right plot, the two sequences happen to cover a
common distribution but neither sequence appears stationary. These graphs demonstrate the need
to use between-sequence and also within-sequence information when assessing convergence.

and discarding the rest. In our applications, we have found it useful to skip iterations in
problems with large numbers of parameters where computer storage is a problem, perhaps
setting k so that the total number of iterations saved is no more than 1000.

Whether or not the sequences are thinned, if the sequences have reached approximate
convergence, they can be directly used for inferences about the parameters θ and any other
quantities of interest.

Multiple sequences with overdispersed starting points

Our recommended approach to assessing convergence of iterative simulation is based on
comparing different simulated sequences, as illustrated in Figure 11.1 on page 276, which
shows five parallel simulations before and after approximate convergence. In Figure 11.1a,
the multiple sequences clearly have not converged; the variance within each sequence is
much less than the variance between sequences. Later, in Figure 11.1b, the sequences have
mixed, and the two variance components are essentially equal.

To see such disparities, we clearly need more than one independent sequence. Thus our
plan is to simulate independently at least two sequences, with starting points drawn from
an overdispersed distribution (either from a crude estimate such as discussed in Section 10.2
or a more elaborate approximation as discussed in the next chapter).

Monitoring scalar estimands

We monitor each scalar estimand or other scalar quantities of interest separately. Estimands
include all the parameters of interest in the model and any other quantities of interest (for
example, the ratio of two parameters or the value of a predicted future observation). It is
often useful also to monitor the value of the logarithm of the posterior density, which has
probably already been computed if we are using a version of the Metropolis algorithm.

Challenges of monitoring convergence: mixing and stationarity

Figure 11.3 illustrates two of the challenges of monitoring convergence of iterative simu-
lations. The first graph shows two sequences, each of which looks fine on its own (and,

• Here two sequences have been running and both of them are converging but to two
different values

• In general, a plot like this is not desirable since it does not give a clear indication
about where the posterior density is, unless the density is bimodal

• In the latter case one would expect the chain to jump from one mode to another
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In the first trace plot (Chain 1), there are no apparent anomalies. There seems to

be a mild serial correlation between successive draws and the chain seems to

explore the sample space many times.

In the second plot (Chain 2), the first part of the sample (until around )

looks very different from the remaining part. Most likely, the initial distribution and

the distributions of the subsequent terms of the chain were very different from the

target distribution, but then the chain slowly converged to the target distribution

(around ). We have Problem 1: a large chunk of the sample is drawn from

Markov Chain Monte Carlo (MCMC) diagnostics https://www.statlect.com/fundamentals-of-statistics/Markov-Chain-M...

7 di 14 09/10/2024, 12:39

• The first part of the sample looks very different from the remaining part.

• Most likely, the initial distribution and the distributions of the subsequent terms of
the chain were very different from the target distribution, but then the chain slowly
converged to the target distribution

• The problem can be solved by removing the initial values (burn-in)

distributions that are significantly different from the target distribution.

In the third plot (Chain 3), there is a lot of serial correlation between successive

draws. The chain is very slow in exploring the sample space. The sample space

has been explored only few times. In other words, there seems to be few

independent observations in our sample. Quite likely, we have Problem 2: the

effective size of our sample is too small.

The next two trace plots show how Problem 1 and 2 can be solved.

Markov Chain Monte Carlo (MCMC) diagnostics https://www.statlect.com/fundamentals-of-statistics/Markov-Chain-M...

8 di 14 09/10/2024, 12:39
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In the first trace plot (Chain 1), there are no apparent anomalies. There seems to

be a mild serial correlation between successive draws and the chain seems to

explore the sample space many times.

In the second plot (Chain 2), the first part of the sample (until around )

looks very different from the remaining part. Most likely, the initial distribution and

the distributions of the subsequent terms of the chain were very different from the

target distribution, but then the chain slowly converged to the target distribution

(around ). We have Problem 1: a large chunk of the sample is drawn from

Markov Chain Monte Carlo (MCMC) diagnostics https://www.statlect.com/fundamentals-of-statistics/Markov-Chain-M...

7 di 14 09/10/2024, 12:39

• A lot of autocorrelation between the draws (⇒ lack of independence)

• Chain very slow in exploring the sample space, explored only few times

• The problem could be due to a small number of iterations ⇒ run longer and, possibly,
take one draw out of m to avoid large sample size and remove autocorrrelation

distributions that are significantly different from the target distribution.

In the third plot (Chain 3), there is a lot of serial correlation between successive

draws. The chain is very slow in exploring the sample space. The sample space

has been explored only few times. In other words, there seems to be few

independent observations in our sample. Quite likely, we have Problem 2: the

effective size of our sample is too small.

The next two trace plots show how Problem 1 and 2 can be solved.

Markov Chain Monte Carlo (MCMC) diagnostics https://www.statlect.com/fundamentals-of-statistics/Markov-Chain-M...

8 di 14 09/10/2024, 12:39
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• We now consider linear regression (LR), providing a linear relation between a de-
pendent variable (Y ) and an independent one (X), sometimes called covariate

• We can distinguish 4 cases based on the dimensions of Y and X

– Simple LR vs. Multiple LR: just one X or multiple X ’s

– Univariate LR vs. Multivariate LR: just one-dimensional Y or multiple dimen-
sional Y

• We consider only the simplest case: Univariate Simple Linear Regression

• Y = β1 + β2X + ε

• β1, β2 univariate unknown parameters

• ε error term with E(ε) = 0 and V ar(ε) = σ2 unknown

• We consider ε ∼ N (0, σ2)
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• Observations: Yi = β1 + β2Xi + εi, i = 1, . . . , n

• Xi’s are supposed known here but they could be r.v.’s as well

• We assume that ε1, . . . , εn are i.i.d. N (0, σ2)

• Notation:Y = (Y1, . . . , Yn) and X = (X1, . . . , Xn)

• Likelihood function L(β1, β2, σ2|Y ,X) given by
n∏

i=1

f(Yi|Xi, β1, β2, σ
2) =

n∏

i=1

{
1√
2πσ

exp{−
(Yi − β1 − β2Xi)2

2σ2
}
}

∝
1

(σ2)n/2
exp{−

∑n
i=1(Yi − β1 − β2Xi)2

2σ2
}

• Independent priors with known hyperparameters:

β1 ∼ N (0, τ2
1), β2 ∼ N (0, τ2

2) and σ2 ∼ IG(a, b)
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• Posterior distribution

π(β1, β2, σ
2|Y ,X) ∝

1

(σ2)n/2
exp{

−
∑n

i=1(Yi − β1 − β2Xi)2

2σ2
} ·

· exp{−β2
1/(2τ

2
1)} exp{−β2

2/(2τ
2
2)}

1

(σ2)a+1
exp{−b/σ2}

• Conditional on β1: β1|β2, σ2, Y ,X ∼ N
(∑n

i=1(Yi − β2Xi)

n+ σ2/τ2
1

,
1

n/σ2 +1/τ2
1

)

π(β1|β2, σ
2, Y ,X) ∝ exp{

−(nβ2
1 − 2β1

∑n
i=1(Yi − β2Xi)

2σ2
} exp{−β2

1/(2τ
2
1)}

∝ exp

{
−
1

2

[(
n

σ2
+

1

τ2
1

)
β2
1 − 2

β1

σ2

n∑

i=1

(Yi − β2Xi)

]}

∝ exp

{
−

1

2(n/σ2 +1/τ2
1)

−1

[
β2
1 − 2

β1

σ2

∑n
i=1 (Yi − β2Xi)

n/σ2 +1/τ2
1

]}
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• Conditional on β2: β2|β1, σ2, Y ,X ∼ N
(∑n

i=1Xi(Yi − β1)∑n
i=1X

2
i + σ2/τ2

1

,
1∑n

i=1X
2
i /σ

2 +1/τ2
1

)

π(β2|β1, σ
2, Y ,X) ∝ exp{−

β2
2

∑n
i=1X

2
i − 2β2

∑n
i=1Xi(Yi − β1)

2σ2
} exp{−β2

2/(2τ
2
2)}

∝ exp

{
−
1

2

[(∑n
i=1X

2
i

σ2
+

1

τ2
2

)
β2
2 − 2

β2

σ2

n∑

i=1

Xi (Yi − β1)

]}

∝ exp



−

1

2(
∑n

i=1
X2

i

σ2 + 1
τ 2
1

)−1

[
β2
2 − 2

β2

σ2

∑n
i=1Xi (Yi − β1)∑n

i=1X
2
i /σ

2 +1/τ2
1

]


• Conditional on σ2: σ2|β1, β2, Y ,X ∼ IG
(
a+ n/2, b+

∑n
i=1(Yi − β1 − β2Xi)2

2

)

π(σ2|β1, β2, Y ,X) ∝
1

(σ2)n/2
exp{−

∑n
i=1(Yi − β1 − β2Xi)2

2σ2
}

1

(σ2)a+1
exp{−b/σ2}

• ⇒ Gibbs sampling
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• We have found the posterior distributions of the parameters in a suitable form to

apply MCMC ⇒ now we can estimate them, e.g., considering the posterior mean,
and build credible intervals in a way similar to what we saw earlier (and I will not
repeat it)

• When considering more than one covariate, i.e., X1, . . . , Xn, still Gaussian priors
should be considered for each of them

• Similarly to the frequentist approach, there is an interest for the covariates which are
significant

– Instead of considering p-values, Bayesians look for a credible interval and check
if 0 belongs to it

– If the credible interval contains 0 then the covariate is not significant; otherwise,
it is

– We will see an example next

• If Y is multivariate, then multivariate Gaussian distributions are chosen to model the
observations and as a prior for the mean, while an Inverse Wishart distribution is
chosen for the covariance matrix
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• Both frequentist and Bayesian methods will be applied in the next example

• 713 observations corresponding to the days where the prices of the Bitcoins in 8
different exchange markets were recorded together with the prices of the classical
assets and the exchange rates

• We will use the package rstanarm and the function stan glm, whose usage is
similar to lm

• Use of improper priors leading to results close to frequentist ones

• You could try other priors, using the R tutorials, like ?stan glm

• For this example, I tried stan lm, the very equivalent of lm (both about linear mod-
els) but it did not work, so that I used the one for generalised linear models

• I first present the commands for the frequentist analysis
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rm(list=ls()) # Clear the environment
install.packages("ggplot2",dependencies=TRUE)
install.packages("readxl",dependencies=TRUE)
install.packages("corrplot",dependencies=TRUE)
library(ggplot2);library(readxl);library(corrplot)
exchanges<-read_excel("exchanges.xlsx") # Read in working directory
data<-exchanges
data1<-data[-1] # Remove the first column from data
# New dataset with returns instead of prices: (log(x)-log(x-1))
data2<-as.data.frame(sapply(data1,function(x)diff(log(x),lag=1)))
attach(data2) # Bring the names of the variables directly into memory
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# Multiple linear regression [btc_coinbase on all other variables]
model_3<-lm(btc_coinbase˜.,data=data2)
summary(model_3)
# Get and plot residuals
res<-model_3$residuals
plot(res,type=’l’)
install.packages("rstanarm",dependencies=TRUE)
library(rstanarm)
model_b<-stan_glm(btc_coinbase˜.,data=data2)
summary(model_b, digits=3)
# Get and plot residuals
resb<-model_b$residuals
plot(resb,type=’l’)

Default priors: standard Gaussian for intercept and coefficients and exponential of param-

eter 1 for σ2
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Results based on MLE

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0001059 0.0003123 0.339 0.73454
btc_kraken 0.0210321 0.0123977 1.696 0.09025 .
btc_bitstamp 0.0384385 0.0359272 1.070 0.28503
btc_itbit 0.0130343 0.0256007 0.509 0.61082
btc_bitfinex 0.2297741 0.0315236 7.289 8.47e-13 ***
btc_hitbtc 0.0821093 0.0184755 4.444 1.03e-05 ***
btc_gemini 0.5981632 0.0308680 19.378 < 2e-16 ***
btc_bittrex 0.0056419 0.0145595 0.388 0.69850
usdyuan -0.1045943 0.2066436 -0.506 0.61291
usdeur 0.2060414 0.0986501 2.089 0.03710 *
gold 0.0712161 0.0575053 1.238 0.21597
oil -0.0595675 0.0192726 -3.091 0.00208 **
sp500 -0.0952889 0.0569865 -1.672 0.09495 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Results based on Bayes

Estimates:
mean sd 10% 50% 90%

(Intercept) 0.000 0.000 0.000 0.000 0.001
btc_kraken 0.021 0.012 0.005 0.021 0.037
btc_bitstamp 0.040 0.036 -0.006 0.040 0.086
btc_itbit 0.012 0.026 -0.020 0.012 0.044
btc_bitfinex 0.228 0.031 0.189 0.228 0.268
btc_hitbtc 0.082 0.019 0.057 0.081 0.106
btc_gemini 0.599 0.031 0.560 0.599 0.638
btc_bittrex 0.006 0.015 -0.013 0.006 0.025
usdyuan -0.103 0.206 -0.360 -0.106 0.162
usdeur 0.205 0.099 0.078 0.205 0.333
gold 0.071 0.058 -0.003 0.070 0.145
oil -0.059 0.019 -0.084 -0.060 -0.035
sp500 -0.095 0.058 -0.170 -0.095 -0.021
sigma 0.008 0.000 0.008 0.008 0.009
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• Warmup is better known as burn-in, i.e. the first values are discarded because af-
fected by the starting values

• We now consider different priors, like Student t for each coefficient, Cauchy for the
intercept and exponential for σ2

• We consider also 1 chains, setting a seed and the number of iterations

model_b<-stan_glm(btc_coinbase˜.,chains=1,seed=12345,iter=250,
prior=student_t(df=4,0,2.5),prior_intercept=cauchy(0,10),prior_aux =
exponential(1/2),data=data2)
summary(model_b, digits=3)
print(model_b)
prior_summary(model_b) # To see the chosen priors
library(bayesplot)
mcmc_dens(model_b)
library(bayestestR)
hdi(model_b)
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sp500 sigma

usdyuan usdeur gold oil

btc_bitfinex btc_hitbtc btc_gemini btc_bittrex

(Intercept) btc_kraken btc_bitstamp btc_itbit

-0.2 -0.1 0.0 0.0078 0.0081 0.0084 0.0087

-0.2 0.0 0.2 0.1 0.2 0.3 0.4 -0.05 0.00 0.05 0.10 0.15 0.20 -0.100 -0.075 -0.050 -0.025 0.000

0.20 0.24 0.28 0.32 0.025 0.050 0.075 0.100 0.125 0.57 0.60 0.63 0.66 -0.02 0.00 0.02

-0.00050-0.000250.000000.000250.000500.00075 -0.010.00 0.01 0.02 0.03 0.04 0.05 -0.04 0.00 0.04 0.08 -0.025 0.000 0.025 0.050 0.075

Posterior distributions of all parameters
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Highest density intervals

Parameter | 95% HDI
-----------------------------
(Intercept) | [ 0.00, 0.00]
btc_kraken | [ 0.00, 0.04]
btc_bitstamp | [-0.03, 0.10]
btc_itbit | [-0.04, 0.06]
btc_bitfinex | [ 0.17, 0.29]
btc_hitbtc | [ 0.04, 0.11]
btc_gemini | [ 0.55, 0.66]
btc_bittrex | [-0.02, 0.04]
usdyuan | [-0.28, 0.29]
usdeur | [ 0.02, 0.36]
gold | [-0.04, 0.18]
oil | [-0.09, -0.01]
sp500 | [-0.19, 0.05]
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LOGISTIC REGRESSION
• The previous example dealt with continuous variables but what about a response

(dependent variable) taking only a finite number of integer values?

• Consider people applying for mortgages (or subject to surgery): are they able to pay
the mortgage back (or will they survive)?

• The observations are 1’s (pays back/survives) and 0’s (does not pay back/dies)

• We are still interested in studying the effect of covariates (independent variables),
like age and gender, on the final result

• We cannot use Y = β1 + β2X + ϵ with Y = 0,1 since it is almost impossible to
choose r.h.s. terms such that there is always either 0 or 1 in the l.h.s.

• We consider π = P (Y = 1) but we cannot use π = β1+β2X+ϵ since it is almost
impossible to choose r.h.s. terms such that the l.h.s. will be always between 0 and 1

• (logit) transformation: log
(

π

1− π

)
= X

′
β, with X

′
, β vectors of size k

• Earlier: X ′
= (1, X), β

′
= (β1, β2)
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• log

(
π

1− π

)
= X

′
β ⇒ π =

eX
′
β

1+ eX
′β

• For each i = 1, . . . , n, consider ni observations (yi, xi) and the related probability
πi (e.g. yi, out of ni, persons with features xi, paid the mortgage back)

• y = (y1, . . . , yn), x = (x1, . . . , xn), π = (π1, . . . , πn) and n = (n1, . . . , nn)

• We consider a Binomial model (Bernoulli if ni = 1)

P (Yi = yi|πi, ni, xi) =
(ni

yi

)
πyi

i (1−πi)
ni−yi =

(ni

yi

)( ex
′
iβ

1+ ex
′
iβ

)yi (
1

1+ ex
′
iβ

)ni−yi

• Likelihood:
n∏

i=1

(ni

yi

) eyix
′
iβ

(
1+ ex

′
iβ
)ni

• Prior distribution on β: e.g. Multivariate Gaussian (simplest: product of independent
univariate Gaussian distributions)
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• Survey of 3200 residents in a small area of Bangladesh suffering from arsenic con-
tamination of groundwater*

• Respondents with elevated arsenic levels in their wells were encouraged to switch
their water source to a safe well in the nearby area and the survey was conducted
several years later to learn which of the affected residents had switched wells

• The goal of the analysis is to learn about the factors associated with switching wells

• To start, we will use dist (the distance from the respondent’s house to the nearest
well with safe drinking water) as the only predictor of switch (1 if switched, 0 if not).

• Then we will expand the model by adding the arsenic level of the water in the resi-
dent’s own well as a predictor and then we will add all variables

• After loading the wells data, we first rescale the dist variable (measured in me-
ters) so that it is measured in units of 100 meters

*Example due to Gabry and Goodrich (website), based on Gelman and Hill’s book
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library(rstanarm)
data(wells)
wells$dist100 <- wells$dist / 100
head(wells)
library(ggplot2)
ggplot(wells,aes(x=dist100,y=after_stat(density),fill=switch==1)) +
geom_histogram() + scale_fill_manual(values=c("gray30", "skyblue"))

• Distribution of dist100: 1737 residents who switched (blue bars) and 1283 who did
not (dark grey bars)

• We use a Student t prior with coefficients close to 0 but with chances of being large
(less likely under Gaussian)
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0

1

2

3

0 1 2 3

dist100

de
ns

ity switch == 1

FALSE

TRUE

• It is just one density (not two!) which describes also the proportion of switch (blue)
/no switch (dark grey) at various distances

• For the residents who switched wells, the distribution of dist100 is more concen-
trated at smaller distances
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t_prior <- student_t(df = 7, location = 0, scale = 2.5)
fit1<-stan_glm(switch ˜ dist100,data=wells,seed = 12345,
family = binomial(link = "logit"),
prior = t_prior, prior_intercept = t_prior)

summary(fit1,digits=3)
round(posterior_interval(fit1, prob = 0.5), 3) # digits=3
fit2 <- update(fit1, formula = switch ˜ dist100 + arsenic)
round(coef(fit2), 3)
summary(fit2,digits=3)
fit3<-stan_glm(switch ˜ arsenic+assoc+educ+dist100,data=wells,
family = binomial(link = "logit"),seed = 12345,
prior = t_prior, prior_intercept = t_prior)
summary(fit3,digits=3)
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LOGISTIC REGRESSION

• switch – binary/dummy (0 or 1) for well-switching

• 0.468: arsenic – arsenic level in respondent’s well

• -0.897: dist100 – distance (100 meters) from the respondent’s house to the near-
est well with safe drinking water

• -0.125: association – binary/dummy (0 or 1) if member(s) of household partici-
pate in community organizations

• 0.043: educ – years of education (head of household)

• Interpretation of those numbers (posterior means)?
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LOGISTIC REGRESSION
Estimates:

mean sd 10% 50% 90%
(Intercept) -0.157 0.103 -0.291 -0.157 -0.026
arsenic 0.468 0.042 0.414 0.468 0.522
assoc -0.125 0.077 -0.223 -0.125 -0.026
educ 0.043 0.010 0.030 0.042 0.055
dist100 -0.897 0.107 -1.033 -0.896 -0.759
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LOGISTIC REGRESSION

• Using the coefficient estimates from the first model, we can plot the predicted prob-
ability of switch = 1 (as a function of dist100)

• plogis is the cdf of a logistic distribution

t_prior <- student_t(df = 7, location = 0, scale = 2.5)
fit1<-stan_glm(switch ˜ dist100,data=wells,seed = 12345,
family = binomial(link = "logit"),
prior = t_prior, prior_intercept = t_prior)

summary(fit1,digits=3)
pr_switch <- function(x, ests) plogis(ests[1] + ests[2] * x)
coef(fit1)[1]; coef(fit1)[2]
aa=seq(0,12,0.25)
plot(aa,pr_switch(aa,coef(fit1)),type=’l’,xlab=’dist100’,
ylab=’Predicted probability of switch’)
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LOGISTIC REGRESSION
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