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Abstract.

Mathematical and computational modeling frameworks play the leading role in the analysis
and prediction of the dynamics of gene regulatory networks. The literature abounds in various
approaches, all of which characterized by strengths and weaknesses. Among the others, ODE models
give a more general and detailed description of the network structure. But, analytical computations
might be prohibitive as soon as the network dimension increases, and numerical simulation could be
nontrivial, time-consuming and very often impracticable as precise and quantitative information on
model parameters are frequently unknown and hard to estimate from experimental data. Last but
not least, they do not account for the intrinsic stochasticity of regulation.

In the present paper we consider a class of ODE models with stochastic parameters. The proposed
method separates the deterministic aspects from the stochastic ones. Under specific assumptions
and conditions, all possible trajectories of an ODE model, where incomplete knowledge of parameter
values is symbolically and qualitatively expressed by initial inequalities only, are simulated in a single
run from an initial state. Then, the occurrence probability of each trajectory, characterized by a
sequence of parameter inequalities, is computed by associating probability density functions with
network parameters.

As demonstrated by its application to the gene repressilator system, the method seems particu-
larly promising in the design of synthetic networks.
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1. Introduction. The concentration levels and the temporal patterns of gene
products, crucial to both developmental and housekeeping processes, are controlled
by networks of mutual regulatory interactions between molecular species, e.g., genes,
RNAs, proteins, etc., the so-called Gene Regulatory Networks (GRN). Innovative
experimental technologies have made their disclosure possible and revealed the ex-
treme complexity of their underlying structures. Thus, for the comprehension and
prediction of the dynamics of these networks, mathematical models combined with
computational analyzers and/or simulators are essential and valuable tools [1].

A variety of frameworks that support both gene network modeling and simulation
have been developed [4, 16, 21]. All proposed methods have particular goals, strengths
and weaknesses, and capture network dynamics at different resolutions, both discrete
and continuous. They also differ on how they model response functions in transcrip-
tion regulation, for example Heaviside response functions, Hill response functions,
mass action law dynamics, and Michaelis-Menten response functions. There exist
pure deterministic models as well as stochastic models. There is no general agree-
ment in the literature on how to model transcription regulation in the most correct
way but the usefulness of one or the other of these approaches to study a specific
network depends on applicability, generalization and modeling tasks.

The most detailed relationships between stochasticity and gene regulation are
explained in several scenarios by single-molecule level models [23]. GRNs can be
considered as systems of coupled chemical reactions, and, under the assumption of
spatial homogeneity, the stochastic process underlying them can be modeled as a
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Markov process. Two main approaches to modeling stochastic events exist: stochas-
tic differential equations and stochastic simulation algorithms [21, 25]. Stochastic
differential models are mainly based on variations of the chemical master equation.
These models capture stochasticity quite well but they are too complex to be solved
analytically and are mostly intractable, even numerically, when a large number of
molecules are considered. Stochastic simulation algorithms (SSA), i.e., the Gillespie’s
algorithm and its variants, perform numerical simulation of the Markov process they
describe [8, 9]. The SSA algorithms give a good approximation of the chemical mas-
ter equation. The bottleneck of these methods lies in the large computation time of
their application because they simulate every individual reaction. To speed up SSA,
there are several different implementation strategies, among those we mention the
τ -leaping one. It leaps over many reactions in one time step [10] and gives the better
performance in terms of efficiency. But, in the words of [3]: Approximations of the

τ -leaping method can sometimes cause unphysical results, such as negative number

of molecules. Practical but complex implementation strategies aiming at balancing
accuracy with efficiency of the τ -leaping method have been given in the literature [3].

In a deterministic framework, a general and detailed description of the dynamics
of gene regulatory networks is provided by phenomenological models formalized by
Ordinary Differential Equations (ODE). In theory, ODE models have a great predic-
tive potential, but, in practice, they are currently applicable to only a few systems.
A numerical investigation of large networks could be nontrivial, time consuming and
often impracticable as it requires precise knowledge on kinetic parameters, scarcely
available for the biochemical reaction mechanisms underlying gene regulatory interac-
tions and often not identifiable from experimental data. However, where the network
of interactions is complex and parameter values are not known with any precision, a
qualitative study of these models is still valuable for understanding potential dynami-
cal behavior and for disclosing and developing “principles” relating network structure
to dynamics. To support qualitative analysis and simulation, computational tools are
necessary as the analysis easily gets prohibitive as soon as the network dimension
increases. Only few computational tools are currently available. One of them, called
GNA, provides automated qualitative analysis of models of GRNs with Heaviside re-
sponse functions, i.e., Piecewise-Linear ODE models [5]. In this tool the analysis
is based on the Filippov approach, but, problems can arise with non-existence or
non-uniqueness of solutions, some of which are spurious [22].

An alternative computational framework considers ODE models that capture the
intrinsic nonlinearity and temporal multi-scale of GRN dynamics by using steep sig-
moid response functions. The simulation algorithm of the solutions of these models is
based on sound rules established by the results given in [14], that give sufficient con-
ditions ensuring the applicability of the singular perturbation method under specific
biologically reasonable assumptions. The resulting tool provides sound and complete
predictions [15], i.e., in a single run, it provides all possible dynamics of nonlinear and
temporal multi-scale dynamics of GRN, where each predicted trajectory is character-
ized by delimited ranges of parameter values as well as by its qualitative dynamical
property, e.g., stable, cyclic or spiraling solution. Although limitedly to a specific class
of models, the latter computational framework holds the potential power to predict
either the full range of network dynamics under different conditions or the dynami-
cal changes in correspondence of network failures and/or extreme conditions. It may
challenge several fields, from biotechnology to medicine, and may play a crucial role in
the comprehension of natural biological systems and, in particular, in the design and
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construction of a synthetic network that exhibits a desired behavior, e.g., sustained
oscillations [2, 7, 11, 12, 17, 18, 27].

In this paper we present a method to enable the above computational tool to as-
sign a probability of occurrence to each of the predicted trajectories. We take stochas-
ticity into account by considering ODE models with steep sigmoid response functions
where the network structure along with gene interactions are given, and the network
uncertainty is expressed by fluctuations in parameter values only. This assumption
allows us to keep the deterministic aspects of model predictions separated from the
stochastic ones with the consequent advantage of getting sustainable computational
costs. This in contrast with traditional approaches to solve ODEs with stochastic
coefficients for which the computational effort might be very high and dramatically
increase with the network dimension due to the heavy computation required for deriv-
ing the solutions directly from the nonlinear stochastic differential model [19, 24]. We
remark that, in the traditional approaches, each stochastic trajectory is determined
by averaging several trajectories, each of them obtained by extracting a value for each
parameter from its density function at every integration step. Thus, the computa-
tional effort refers to the repeated computation needed for each stochastic trajectory,
whereas in our method it refers to the generation of all the qualitative distinctions of
the dynamics together with the computation of their probability of occurrence.

In outline, first the method derives all symbolic/qualitative predictions of the
network dynamics from the ODE model together with initial conditions, where model
parameter values are given in terms of ranges of values symbolically and qualitatively
expressed by inequalities. Each trajectory in the solution tree is associated with
sequence of inequalities and occurs if all the inequalities are satisfied. The occurrence
probability of a trajectory is then given by assigning probability density functions
to the network parameters and, then, by calculating the probability that the whole
sequence of inequalities is satisfied. Assigning probabilities to admissible trajectories
is an important added value to the simulator as it makes it effectively applicable to
realistic contexts, especially in the design of a synthetic network that implements a
particular function or behavior where the uncertainty about the values of parameters
that characterize the interactions between different components should be delimited.

The method works independently of the type of distributions assigned to each
parameter. Probability distributions must be in agreement with modeling assump-
tions and represent the available knowledge on the network: the more complete is the
knowledge of a parameter value the lower should be the variance of its distribution.
Then, the method enables us to mix different levels of knowledge on parameters. Some
may be completely unknown, some known with a relevant uncertainty, and others well
known. In terms of network structure this means that we can infer the dynamics of a
network that can include sub-networks with different degrees of knowledge, for exam-
ple a large network including some well-studied small networks. This might favour a
process to incrementally increase knowledge of gene regulatory networks, both natural
and synthetic, starting from the analysis of its small sub-networks.

The organization of the paper is as follow: Sect. 2 presents the mathemati-
cal background underlying the adopted qualitative simulation algorithm of a class of
ODEs conventionally considered in the literature as a model framework for GRNs.
Sect. 3 is the core of the paper and is devoted to the method for assigning proba-
bilities to the simulation outcome, namely all the possible predicted trajectories with
given initial conditions. The application potential of the method in the context of
synthetic network design is given in Sect. 4 by applying the method to the repressi-
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lator system [7]. Finally, Sect. 5 contains a discussion and our concluding remarks.
For the sake of completeness, we recall the Monte-Carlo integration method in the
Appendix.

2. Background: qualitative simulation of a class of dynamical mod-

els. For the sake of clarity and completeness, we briefly recall the basic assumptions,
definitions and methods underlying a qualitative simulation algorithm of phenomeno-
logical models of the dynamics of gene regulatory networks [14]. Such models are
conventionally given in the literature by the equations:

ẋi = Fi(Z) − γixi, i = 1, . . . , n, (2.1)

where xi ∈ R+ denotes the concentration of gene product number i. Each equation
contains a linear degradation term −γixi with relative rate γi > 0, and a nonlinear
production one Fi(Z), where Z = {Zij} is the set of nonlinear steep sigmoid functions
that rule regulation. More precisely, Zij : R+ → [0, 1] is a function of the variable xi

that continuously switches from 0 to 1 around a certain threshold concentration θij ,
with a steep rise q. Let us observe that we consider the inverse steepness parameter
0 < q ≪ 1, such that the more the value of q is small, the more the state change
around the threshold is steep. As we consider phenomenological deterministic models
of biochemical interaction chains, a steep sigmoid function is conveniently modeled

by the Hill function x1/q

x1/q+θ1/q , with q small. We assume that the mi threshold values
θij for any xi are ordered such that θij < θik if j < k, and we define θi0 = 0, for any i.
The term Fi(Z), frequently composed by algebraic equivalence of Boolean functions,
is mathematically expressed by a multilinear polynomial in the variables Zij with
real-valued production rate kil, where l indicates the l-th interaction in the network
that contributes to the dynamics of xi, and multilinear means linear in each variable.

The mi hyper-planes xi = θij induce a natural partition of the phase-plane into
qualitatively distinct rectangular domains ∆, that we call regular and switching do-
mains.

Let us indicate with δ a positive number such that 2δ is smaller than the difference
between any two neighboring thresholds. The steepness parameter q associated with
the response function Zij determines a narrow band of width 2δ > 0 around θij ,
where δ → 0 when q → 0. A regular domain is a connected rectangular domain where
|xi − θij | > δ for all i and j. In a regular domain all Zij are close to 0 or 1. Thus,
for each Zij we define a variable Bij such that Bij = 0 if xi < θij − δ and Bij = 1 if
xi > θij + δ.

To define a switching domain we first distinguish the network variables xi in
regular variables xr and switching variables xs, where r ∈ R, s ∈ S, and R ∪ S =
N = {1, 2, · · · , n}. A variable xi is called switching, when it assumes values such that
|xi − θij | ≤ δ for some non-null j. Otherwise, it is called regular. We will denote the
whole set of variables, the set of switching and regular variables by xN , xS , and xR,
respectively. Each switching domain is characterized by the sets xS and xR, as well
as by the set θS that contains one threshold θs,js

for each xs ∈ xS . Thus, if we let
Ir be a non-negative integer, a switching domain is such that |xs − θs,js

| < δ for all
s ∈ S, and θr,Ir

+ δ < xr < θr,Ir+1 − δ for each r in R. A switching domain defined
in this way will be denoted ∆(S,R, θS , IR). As shown in Fig. 2.1, in the phase space
partition there exist domains where either S or R, and consequently θS or IR, are
empty.

2.1. Multi-scale dynamics in a domain. In a domain ∆(S,R, θS , IR) the
spatial variation of a switching variable xs is very small, and precisely amounts to
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Fig. 2.1. Idealized dynamics of systems (2.1) with n = 2 in the phase space partitioned into
domains ∆. Regular domains are yellow colored and switching domains are blue colored. In the
figure, definitions of some ∆s are given on the right side. Continuous and dashed lines indicate
fast and slow motion, respectively. Both motions may occur in domains where S 6= ∅ and R 6= ∅.
The double circles denote stable points. The filled circles denote arrival/departure points on the
boundaries of domains: in ∆({1, 2}, ∅, {θ11, θ21}, ∅) when all the components of the exit point (labeled
as 2) take integer values only the dynamics enters a regular domain; when the components of the
departure point (labeled as 1) take non-integer and integer value the dynamics slides towards either
the next threshold or the focal point. The entrance/exit points refer to the switching components of
the arrival/departure points only, and the empty circle denotes an exit point (labeled as 3) from the
switching cross section, from which the slow motion continues towards the boundary of the domain.

2δ, while the corresponding Zs jumps from nearly 0 to nearly 1 in a very short time
interval. On the contrary, the response functions ZR and ZS′ associated, respectively,
with regular or switching variables that assume values far from the thresholds in ∆
take values either nearly 0 or nearly 1 on larger time intervals. This means that reg-
ulation dynamics goes faster than the dynamics of regular or off-threshold variables.
To mathematically highlight this phenomenon, we study the dynamics of xs variables
in the reference system of the variables Z. Thus, in ∆ (2.1) can be rewritten as:

qŻs =Ds[Fs(ZS , ZS′ , ZR) − γsxs], s ∈ S,

ẋr =Fr(ZS , ZS′ , ZR) − γrxr, r ∈ R,
(2.2)

where Ds stems from the derivative of dZs

dxs
. In the case of the Hill function q dZs

dxs
=

Zs(1−Zs)
xs

.
In accordance with standard singular perturbation method, the fast motion is

studied in the fast timescale τ = t/q that leads to:

Z ′
s =Ds[Fs(ZS , ZS′ , ZR) − γsθs], s ∈ S,

x′
r =q[Fr(ZS , ZS′ , ZR) − γrxr], r ∈ R,

(2.3)

where the prime denotes the derivative with respect to τ . In the limit q → 0, (2.3)
simplifies to the boundary layer equation:

Z ′
s =D0

s [Fs(ZS , BS′ , BR) − γsθs], s ∈ S, (2.4)

where D0
s = limq→0 Ds, and BS′ and BR are the sets of Boolean values for the

switching components outside ∆ and the regular components, respectively. Thus, in
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the limit, the term Fs in (2.4) depends only on variables Zs, and fast and slow motion
can be studied separately.

In the limit, during the fast motion of ZS , the regular variables xR stay constant,
being x′

r = 0, r ∈ R. Then, the subsequent slow motion occurs in the regular variables
on the manifold identified by Z = Z0

S , and is described by the linear reduced equation:

ẋr = Fr(Z
0
S , BS′ , BR) − γrxr. (2.5)

In accordance with singular perturbation theory, the solutions of the reduced and
boundary layer equations, taken together, approximate the system dynamics for small
q. Then, in the following we consider the full system in the limit q → 0.

When both S 6= ∅ and R 6= ∅, a combination of fast and slow motion occurs: the
fast motion moves along the switching variable direction followed by a slow motion
that moves along the regular variable direction as illustrated in Fig. 2.1. As detailed
in [14, 26], fast motion happens until a stable point Z0

S , that satisfies the hypotheses
of the Tikhonov-Wasow theorem, is reached. As the value of Z0

S indicates the point
where the trajectory departs from the switching cross-section, we call it exit point of
∆. Similarly, we call entrance point the value of the initial condition of (2.4), as it
indicates the point where the trajectory enters the switching cross section.

The location of the exit point, either on the boundary or in the interior of ∆
depends on the parameter values kil, γi, θij in the boundary layer equations. Accord-
ing to whether the exit point is located, the system exhibits different behaviors. In
the former case, where at least one component of Z0

S takes the integer value 0 or 1
on the domain boundary, the next motion occurs in an adjacent domain where the
fast components become slow. In the latter case, internal Z0

S , the regular motion
slides along the manifold given by Z = Z0

S , orthogonally to the switching thresh-
olds of ∆, and towards the focal point Φ = (Z0

S , x∗
R), whose regular components

x∗
r = Fr(Z

0
S)/γr, r ∈ R, that depends on the parameters in (2.5), are assumed to

never take threshold values, i.e., x∗
r 6= θrj for all r and for all j. Such sliding motion

occurs until it reaches either a stable point of (2.5), getting a system stable state, or
a new threshold for any xr, and enters a new domain (Fig. 2.1).

When either S = N or R = N , only fast or slow motion occurs, respectively. The
domains the trajectories move towards are given, in the former case, by the location
of the exit points only; whereas, in the latter one, by the relative position of Φ with
respect to the adjacent threshold values.

The localization of exit points, i.e., the stationary solution of (2.4), is a crucial
problem for the analysis of motion through a domain. Apart the stationary solutions
Zs = 0 and Zs = 1 of (2.4) due to the factor D0

s , in general, this problem is compu-
tationally hard to be solved, even for small networks, as it requires to solve a set of
polynomial equations for which several solutions exist. But, under the assumption,
biologically reasonable, that each transcription factor only regulates one gene at each
threshold, or mathematically speaking that:

Assumption A. Each variable Zij can appear at most in one equation in (2.1),

the set of polynomial equations are simplified to a set of linear equations with at most
a single point-like solution if we disregard the rather unlikely situation that there
could be infinitely many solutions. In other words, there is at most a single interior
candidate Z0

S in each ∆ [14].

2.2. Qualitative simulation of gene regulatory networks. When sufficient
conditions that ensure the applicability of the singular perturbation method under
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the above assumptions are satisfied, sound rules that determine the passage through
any switching domain and, consequently, the sequence of traversed domains can be
established [14]. Such rules underlie an automated analyzer/simulator that calculates
the network dynamics that only depend on the model structure and are invariant
for ranges of parameters [15]. It differs from a simulator that works under simi-
lar assumptions [13] in the way it (i) locally computes the transitions from domains
characterized by multi-scale dynamics, and (ii) composes them to get all possible
qualitatively distinct trajectories. This revised version results in an implemented al-
gorithm significantly improved in terms of soundness, both local and global, efficiency,
and characterization of the qualitative properties of the trajectories, e.g., cyclic and
spiraling trajectories.

2.2.1. Local transitions between adjacent domains. The local analysis in
the current domain ∆a = ∆(Sa, Ra, θSa

, IRa
), mathematically rooted on the results

in [26, 29] and definitively established in [14], aims at identifying all the possible can-
didate transitions to adjacent domains ∆b = ∆(Sb, Rb, θSb

, IRb
), namely all possible

candidate sets Sb, Rb, θSb
, IRb

. The transition to a specific domain ∆b is univocally
determined by ranges on parameter values that make possible the motion from the
entrance point to the exit point of the switching cross-section of ∆a, and thus from
the corresponding arrival point towards a specific departure point on the face of ∆a

at the boundary with ∆b. More precisely, arrival/departure points are N -dimensional
points on the boundaries of a domain at which a trajectory enters/leaves the domain.
The switching variable coordinates are given by the entrance/exit point coordinates
and the remaining R coordinates by the slow components of the motion of the regular
variables in ∆a. The parameter inequalities that state a one-to-one correspondence
between an arrival point and a specific departure point result from both stability
conditions and motion direction constraints.

By the exhaustive analysis of case equations given in [14], where the switching
variables xS are distinguished in xV and xU (v ∈ V, u ∈ U and S = V ∪ U) which
were respectively regular and switching in the previous domain, the inequalities have
specific structures that are determined by the model equations in ∆a. Let kil be the
coefficients in the production term in the rate equation for xi in ∆a. The inequalities
are either linear or bilinear in kil, and take the following two forms only:

∑
kil ≶ γiθij ,

K0Kuv + KuKv ≶ γiθijKuv,
(2.6)

where K0, Kuv, Ku, Kv are given by
∑

kil associated with the constant terms, the
coefficients of the terms ZuZv, Zu and Zv of the equation for xi, respectively.

2.2.2. Trajectory composition. Let us observe that for algorithmic purposes
we number the domains in the phase space. Then, in accordance to our convenience
we refer to a specific domain with either ∆(S,R, θS , IR) or Di, where the value of
i is easily calculated and depends on the number of variable thresholds and on the
indexes in ∆(S,R, θS , IR), e.g., in Fig. 2.1 ∆({1, 2}, ∅, {θ11, θ21}, ∅) is also labeled as
D7.

The algorithm performs an automated qualitative analysis of the model (2.1), and
returns, in a single run, all the possible qualitative trajectories that start from an ini-
tial domain D0 and with initial parameter space d0 defined by parameter inequalities.

Through an iterative procedure, it constructs a tree rooted in D0, where each node
represents a domain, and each edge, labeled by parameter constraints, represents a
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transition between two adjacent domains. At step k, from the current domain Dik
it

symbolically calculates the possible next transitions to Dik+1
, denoted by T

ik+1

ik
, and

the inequalities on parameters, dik,ik+1 , that must hold for the effective occurrence
of the transition. The possible transitions together with their associated inequality
constraints are given by a map of the arrival point in Dik

to its proper departure
point at the boundary with Dik+1

subject to dik,ik+1 . As the map is obtained through
exhaustive analysis of case equations [14], all and none but the transitions to the next
adjacent domains are computed. Thus, the algorithm is locally complete and sound.

Each global trajectory T starting from a domain D0 is calculated by properly
composing in a sequence the local candidate transitions between adjacent domains,
i.e.,

T =< D0, d
0 >, · · · , < T ik

ik−1
, dik−1,ik >,< T

ik+1

ik
, dik,ik+1 >, · · · ,

< T
il̄
il

, dil,il̄ >,< Dil̄
, dil̄ > .

(2.7)

Each T
ik+1

ik
in the sequence is chained to its predecessor and successor transition,

and the entire sequence of sets of inequalities dik,ik+1 , given in the form (2.6), must
be satisfied, i.e., each dik,ik+1 must be compatible with all the others. In case the
solvability of the whole sequence of inequalities is not verified, the generated trajectory
is not globally sound, and then it is rejected. Thus, the resulting solution tree is
globally complete and sound. The iteration process is finite, and the construction
of each trajectory stops when either a stable fixed point is detected or a cycle is
identified. In the former case, il = il̄, a transition Dl to Dl itself is calculated and the
correspondent inequality set dl,l, for short dl, is consistent with all the inequalities
associated with the previous transitions in the sequence; in the latter one, a transition
to a domain Dl̄ = Dp, where Dp is a domain previously visited in T , is calculated,
and its associated inequalities belong to the inequality set already calculated to reach
Dp.

2.2.3. Example. To exemplify let us consider the following toy-example:

ẋ1 =k10 + k11Z21 + k12Z12 − γ1x1,

ẋ2 =k21Z11 − γ2x2,
(2.8)

and let us simulate it with initial condition in D5 = ∆(∅, {1, 2}, ∅, {2, 0}), i.e., θ12 <
x1 < x1 = max(x1) and 0 < x2 < θ21, and inequality constraints d5 : k10 >
γ1θ12, k10+k12 > γ1θ12, k10+k11 < γ1θ11, k10+k11 > 0, k21 > γ2θ21. By assumption,
γ1, γ2, θ11, θ12, θ21 > 0, and θ11 < θ12.

With the given initial constraints the simulation produces 3 trajectories (Fig.
2.2). Although the example is very simple, it is interesting from the didactic point
of view as it provides for different meaningful scenarios: trajectory 1 ends up in
a stable fixed point in the regular domain D15, trajectory 2 terminates its motion
spiraling towards a stable point at threshold intersection in D7 where the Jacobian
has a specific structure and sign pattern, and trajectory 3, that goes back to the
initial domain D5, identifies a cyclic behavior not necessarily a periodic one. The
trajectories are characterized by sequences of parameter inequalities di,j that let the
transition from Di to Dj occur:

Trajectory 1 :
d5, d5,10, d10,15, d15,15;
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Fig. 2.2. Solution tree of the simulation outcomes of the model in the example (2.8) with the
given initial conditions. The simulation produces three different trajectories. Yellow circles denote
regular domain whereas the blue and green ones denote switching domains characterized by both fast
and slow motion, and fast motion only, respectively. The arrows denote the transition from one
domain to another and a black filled diamond denotes that the motion spirals towards the domain.
Octagonal final leaves denote domains with stable attractors whereas a double circle identifies a
cycle.

T1

T2

T3

Trajectory 2 :
d5, d5,10, d10,15, d15,14, d14,13, d13,12, d12,11, d11,6, d6,1, d1,2, d2,3, d3,8, d8,13, d13,7,
d7,7;

Trajectory 3 :
d5, d5,10, d10,15, d15,14, d14,13, d13,12, d12,11, d11,6, d6,1, d1,2, d2,3, d3,4, d4,5.

The inequalities di,j present in one or another of the trajectories are given in
Table 2.1.

3. Assigning probabilities to trajectories. In a qualitative context, where
the knowledge on the model parameters is given by initial order relations only, all
possible trajectories are symbolically derived. The probability of the occurrence of
each simulated trajectory can be calculated when knowledge on parameters is such
that we can associate them with probability density functions. In the following, we
propose a general method that, independent of the type of distribution set to each
parameter, associates an occurrence probability with each branch in a given simulated
solution tree, i.e., with each possible system/network trajectory.

As already mentioned, the transitions in a solution tree depend on three sets of
parameters, namely degradation rates, production rates and thresholds. Let Γ, K and
Θ be the respective model parameter sets defined in accordance with the available
stochastic knowledge, and let us denote by Ψ the stochastic parameter set given by
Ψ = K ∪ Γ ∪ Θ, with |Ψ| = nc. The uncertainty of parameter values ψi ∈ Ψ is
expressed by a priori independent density functions that are chosen in accordance
with the available knowledge on the network: the more complete is the knowledge
of a parameter value the lower should be the variance of its distribution. In general,
the physics of the system suggests continuous density functions, whose shapes can be
either given in accordance with a standardized form (e.g., normal densities, gamma
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Inequality Constraints

T j
i di,j

T 2
1 k10 > γ1θ11

T 3
2 k10 > γ1θ11

T 4
3 k10 > γ1θ12

T 8
3 k21 > γ2θ21

T 5
4 k10 + k12 > γ1θ12

T 10
5 k21 > γ2θ21

T 1
6 γ2θ21 > 0

T 7
7 γ2θ21 > 0; k21 > γ2θ21; k10 > γ1θ11; k21 > 0; k11 < 0

T 13
8 k21 > γ2θ21

T 15
10 k21 > γ2θ21

T 6
11 γ2θ21 > 0

T 11
12 k10 + k11 < γ1θ11

T 7
13 γ2θ21 > 0; γ1θ11 > 0

T 12
13 k10 + k11 < γ1θ11

T 13
14 k10 + k11 + k12 < γ1θ12; k10 + k11 < γ1θ12

T 14
15 k10 + k11 + k12 < γ1θ12

T 15
15 k10 + k11 + k12 > γ1θ12; k10 + k11 + k12 < γ1x1; k21 > γ2θ21; k21 < γ2x2

Table 2.1

Parameter inequalities that hold for the occurrence of a transition T
j
i from a domain Di to the

next one Dj .

densities, etc.) or constructed ad hoc.
The choice of density functions must fulfill the modeling assumptions that, in case

of very incomplete knowledge, represent the only certain constraints on parameters.
In such a case, uniform distributions with large supports suitably represent modeling
constraints on parameter values, only.

If available knowledge is such that distributions can be concentrated around a
value, suggestions for possible suitable densities are given below:

• Degradation rate parameters (γi): they are positive by assumption, and
a unimodal distribution is usually an appropriate choice. The most com-
mon unimodal distribution with positive support is the Gamma density
(fpriori

i (γi) ∼ Gamma (αi, βi)) where the parameters αi and βi have to be

chosen so that fpriori
i (0) = 0.

• Production rate parameters (kil): they can assume both positive or negative
values. If the sign is explicitly given or implicitly carried by the initial condi-
tions, Gamma distributions are appropriate also in this case: fpriori

i (kil) ∼
Gamma (αi, βi) if kil > 0, and fpriori

i (−kil) ∼ Gamma (αi, βi) if kil < 0.
Otherwise, a bimodal distribution is suggested, with a null probability of kil =
0. The combination of two equal Gamma distributions is the most simple
solution: the absolute value follows a Gamma distribution (fpriori

i (|kil|) ∼
Gamma (αi, βi)) and the sign of kil follows a Bernoulli distribution with pa-
rameter 0.5.

• Threshold parameters (θij): they are always assumed to be positive. More-
over, the thresholds θij , j = 1, . . . ,mi associated with each state variable
xi are ordered and well-separated. As a consequence, parameters θs have to
take values in a limited range, between a minimum and a maximum value,
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and have to respect threshold ordering and domain disjunction. Ordering
and disjunction of supports is properly represented by uniform distributions
(fpriori

i (θij) ∼ U (aij , bij)) with bij < ai j+1. Moreover, their supports
(aij , bij) can be narrow when threshold parameters can be identified by gene
expression profiles [6].

Whenever the knowledge on parameters is good enough to limit their ranges of
variability [α, β] and to concentrate their values around a peak µ, truncated Gaussian
distributions T N

(
µ, σ2, α, β

)
provide suitable alternatives. The analytical expression

of such density is as follows:

fpriori
i (ψi) =

e−
1

2σ2 (ψi−µ)2

√
2πσ2

[
φ

(
β−µ

σ

)
− φ

(
α−µ

σ

)]1(α,β)

where φ is the cumulative density function of the standard normal distribution N (0, 1).
Let us remark that, since the distribution is truncated, µ and σ2 do not represent any
more the expected value and variance of ψi.

The set Ψ is characterized by a continuous joint probability density function
f0 (Ψ) with support in V0, where V0 ⊆ R

nc is the range of variability defined by
the initial parameter inequality constraints (i.e., V0 includes all and only values of Ψ
that satisfy the initial inequality system). Starting from the a priori densities, f0 (Ψ)
results from restricting the support of all densities fpriori

i (ψi) to V0. As the a priori

marginal densities are assumed to be independent and the joint a priori density is
given by their product, f0 (Ψ) is:

f0 (Ψ) =






Qnc
i=1 f

priori
i (ψi)

R

V0
[
Qnc

i=1 f
priori
i (ψi)]dψ1...dψnc

Ψ ∈ V0

0 elsewhere
(3.1)

We underline that, in our approach, even if the parameters ψi are assumed to
be independent in the a priori densities, in f0 (Ψ) they are not independent any
more due to the shape of V0 itself. In fact, the independence between parameters
ψi is not maintained after the support restriction because V0 is in general not simple
(according to the definition of simple regions for multiple integrals) with respect to
the components ψi. As a consequence, f0 (Ψ) cannot be factorized into the product
of its marginal densities.

As defined in (2.7), a trajectory T consists of a chain of subsequent transitions
T j

i which start from an initial domain and end in a final domain that either contains

an attractor or identifies a cycle. The occurrence of each transition T j
i in T implies

that the systems of inequalities di,j of all previous transitions in the same T are
satisfied. As a consequence, given two subsequent transitions T b

a and T c
b , and the

ranges of variability Va and Vb in which inequality systems da,b and db,c are evaluated,
respectively, it follows that Vc ⊆ Vb ⊆ Va ⊆ V0. Secondary to the reduction of its
support, the joint density function is cut with a consequent change of its shape. Given
a range Vi, let us denote by fi (Ψ) the joint density function with support in Vi.

3.1. Probability of a local transition. As already mentioned, an admissible
transition T b

a between domain ∆a and domain ∆b is associated with a system da,b (Ψ)

of m inequalities, where each inequality da,b
j (Ψ) > 0 has a linear or bilinear structure

as in (2.6).
In the stochastic setting, unlike the deterministic case where each inequality is

either verified or not verified, the solution of each inequality is given in terms of
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the probability to be satisfied. This is the expected value of a Bernoulli stochastic
variable. Similarly, the solution of the system da,b (Ψ) is the expected value of another
Bernoulli stochastic variable, which represents the probability P [da,b] that the system
is satisfied.

The Bernoulli variable of the system can be expressed as
∏m

j=1 1
d

a,b
j (Ψ), where 1h

is the indicator function equal to 1 if h > 0 and 0 elsewhere. Thus:

P [da,b] = E




m∏

j=1

1
d

a,b
j (Ψ)



 =

∫

Va




m∏

j=1

1
d

a,b
j (Ψ)



 fa (Ψ) dψ1 . . . dψnc
, (3.2)

We remark that P [da,b] is conditional because it requires that the state variables have
previously reached domain ∆a from which the transition under analysis occurs. The
conditional term could be explicited by adopting the notation P

[
da,b|∆a

]
, even if this

is neglected in the following for the sake of simplicity.
In general, the m inequalities da,b

j (Ψ) are not independent, because variables ψi

may appear in more than one da,b
j (Ψ). Hence, the probability P [da,b] cannot be

factorized into the probabilities of the single inequalities and, then, the inequalities
cannot be studied separately.

The probability P [da,b] is assumed to be the probability of the transition P [T b
a ]

when one single path is admissible from ∆a. But, as highlighted in Fig. 2.2, multiple
paths can branch off from a domain. For the sake of clarity, we start the analysis
considering the case of two possible transitions from the same domain and, then, we
extend the discussion to any number of possible transitions.

Let us consider two transitions from domain ∆a to domains ∆b and ∆c, con-
strained by the inequality systems da,b and da,c, respectively. The probabilities of the
inequality systems da,b and da,c are calculated according to (3.2):

P [da,b] =

∫

Va




m∏

j=1

1
d

a,b
j (Ψ)



 fa (Ψ) dψ1 . . . dψnc
;

P [da,c] =

∫

Va




m∏

j=1

1d
a,c
j (Ψ)



 fa (Ψ) dψ1 . . . dψnc
.

Moreover, the probability P [da,b∧c] that the systems da,b and da,c are both satis-
fied is still determined according to (3.2), after enclosing the two inequality systems
da,b and da,c in a single system da,b∧c:

P [da,b∧c] =

∫

Va




m∏

j=1

1
d

a,b∧c
j (Ψ)



 fa (Ψ) dψ1 . . . dψnc
.

Due to soundness and completeness of the algorithm, at least one or the other of
the systems da,b and da,c is verified in each point of Va, and two possible situations
can occur:
Case 1: the two inequality systems da,b and da,c are mutually alternative, i.e., they

work on the same parameters ψi (all the set Ψ or a part of it) with mutually
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(a) (b)

(c)

Fig. 3.1. Splitting of Va in different cases: (a) two mutually alternative inequality systems da,b

and da,c; (b) two not mutually alternative inequality systems da,b and da,c; (c) three not mutually
alternative inequality systems da,b, da,c and da,d.

alternative inequalities. If one of the two systems is satisfied for a specific
set of values assigned to Ψ, the other system is necessarily unsatisfied for the
same set. This means that the range of variability Va is partitioned into two
parts Vb

a and Vc
a. Values of Ψ ∈ Vb

a allow transition T b
a and values of Ψ ∈ Vc

a

allow transition T c
a (Fig. 3.1a).

Thus, P [da,b∧c] = 0, and the probabilities of the transitions P [T b
a ] and P [T c

a ]
are straightforward defined:

P [T b
a ] := P [da,b]; P [T c

a ] := P [da,c].

Case 2: the two inequality systems da,b and da,c are not mutually alternative. This
means that they work on different parameters ψi or, alternatively, on the
same parameters but the systems are not mutually alternative. In this case,
for certain values assigned to Ψ, if one of the two systems is satisfied also
the other is satisfied. Hence, P [da,b∧c] > 0. In this case, Vb

a and Vc
a do

not represent a partition of Va because they have a non-empty intersection,
denoted with Vb∧c

a , in which both the inequality systems are satisfied (Fig.
3.1b). Indeed, we have:

Va = (Vb
a \ Vb∧c

a ) ∪ (Vc
a \ Vb∧c

a ) ∪ Vb∧c
a ;

(Vb
a \ Vb∧c

a ) ∩ (Vc
a \ Vb∧c

a ) = ∅.
(3.3)

Due to (3.3), the probabilities of the inequality systems are related as follows:

1 =
(
P [da,b] − P [da,b∧c]

)
+

(
P [da,c] − P [da,b∧c]

)
+ P [da,b∧c] =

=

(
P [da,b] − 1

2
P [da,b∧c]

)
+

(
P [da,c] − 1

2
P [da,b∧c]

)
.

As P [da,b∧c] > 0 the estimation of the transition probabilities is given within
a range. More precisely, P [T b

a ] ∈
[
P [da,b] − P [da,b∧c], P [da,b]

]
and P [T c

a ] ∈
13



[
P [da,c] − P [da,b∧c], P [da,c]

]
. To equally account for P [da,b∧c] between the

transitions, we associate these ranges with uniform distributions and define
P [T b

a ] and P [T c
a ] as the expected values of these distributions:

P [T b
a ] := P [da,b] − 1

2
P [da,b∧c];

P [T c
a ] := P [da,c] − 1

2
P [da,b∧c].

(3.4)

Obviously, this definition obeys P
[
T b

a

]
+ P [T c

a ] = 1.
In the presence of more than two not mutually alternative transitions, all of the

resulting divisions of Va have to be evaluated.
As for three possible transitions T b

a , T c
a and T d

a from domain ∆a to domains
∆b, ∆c and ∆d, Va is divided in three overlapped parts Vb

a, Vc
a and Vd

a . Different
intersections appear: three intersections Vb∧c

a , Vb∧d
a and Vc∧d

a between two parts, and
one intersection Vb∧c∧d

a between all the three parts (Fig. 3.1c). Then, we have:

Va = (Vb
a \ Vb∧c

a ∪ Vb∧c∧d
a \ Vb∧d

a ) ∪ (Vc
a \ Vb∧c

a ∪ Vb∧c∧d
a \ Vc∧d

a ) ∪
∪ (Vd

a \ Vb∧d
a ∪ Vb∧c∧d

a \ Vc∧d
a ) ∪ (Vb∧c

a \ Vb∧c∧d
a ) ∪ (Vb∧d

a \ Vb∧c∧d
a ) ∪

∪ (Vc∧d
a \ Vb∧c∧d

a ) ∪ (Vb∧c∧d
a ); (3.5)

where the subsets in parentheses partition Va because they have empty intersections.
As Vb∧c∧d

a is included in all three Vb∧c
a , Vb∧d

a and Vc∧d
a , the term “∪Vb∧c∧d

a ” in the
first three parentheses compensates for the double subtraction.

Similar to the previous case, due to (3.5) and the empty intersections, the prob-
abilities of the systems are related as follows:

1 =
(
P [da,b] − P [da,b∧c] + P [da,b∧c∧d] − P [da,b∧d]

)
+

+
(
P [da,c] − P [da,b∧c] + P [da,b∧c∧d] − P [da,c∧d]

)
+

+
(
P [da,d] − P [da,b∧d] + P [da,b∧c∧d] − P [da,c∧d]

)
+

+
(
P [da,b∧c] − P [da,b∧c∧d]

)
+

(
P [da,b∧d] − P [da,b∧c∧d]

)
+

+
(
P [da,c∧d] − P [da,b∧c∧d]

)
+ P [da,b∧c∧d] =

=

(
P [da,b] − 1

2
P [da,b∧c] − 1

2
P [da,b∧d] +

1

3
P [da,b∧c∧d]

)
+

+

(
P [da,c] − 1

2
P [da,b∧c] − 1

2
P [da,c∧d] +

1

3
P [da,b∧c∧d]

)
+

+

(
P [da,d] − 1

2
P [da,b∧d] − 1

2
P [da,c∧d] +

1

3
P [da,b∧c∧d]

)
.

We define P [T b
a ], P [T c

a ] and P [T d
a ] so that P [T b

a ] + P [T c
a ] + P [T d

a ] = 1 and they
equally account for the intersections:

P [T b
a ] := P [da,b] − 1

2
P [da,b∧c] − 1

2
P [da,b∧d] +

1

3
P [da,b∧c∧d];

P [T c
a ] := P [da,c] − 1

2
P [da,b∧c] − 1

2
P [da,c∧d] +

1

3
P [da,b∧c∧d];

P [T d
a ] := P [da,d] − 1

2
P [da,b∧d] − 1

2
P [da,c∧d] +

1

3
P [da,b∧c∧d].

14



Fig. 3.2. Possible transitions from domain ∆a. Values of parameter set in: (a) Vb
a \ Vb∧c

a

or Vb
a (for mutually alternative transitions); (b) Vb∧c

a for which the actual transition depends on
the specific coordinates of the initial state within ∆a; (c) Vc

a \ Vb∧c
a or Vc

a (for mutually alternative
transitions).

In the general case, with more than three admissible transitions from domain ∆a,
transition probabilities P [T i

a] to each domain ∆i are similarly defined.

Remark. In qualitative simulation, two or more transitions are all possible from
a given domain ∆a because both the initial state and the parameters are not given
a specific value. As for the state, we recall that the qualitative value abstracts the
value of coordinates in the whole domain. With reference to two transitions, in Case

1, where mutually alternative systems of inequalities characterize the transitions and
P [da,b∧c] = 0, only either one or the other transition occurs for all values of parameter
set in Va, independently of the specific coordinates of the initial state in the domain.
As for Case 2, where P [da,b∧c] > 0, only either one or the other transition occurs
for parameter values either in Vb

a \ Vb∧c
a or Vc

a \ Vb∧c
a , independently of the specific

coordinates of the initial state in the domain, as in the previous case. On the contrary,
both transitions are allowed for values of parameter set in Vb∧c

a : this holds because
the actual occurrence of one or the other depends on the specific initial state value
within ∆a (Fig. 3.2).

3.2. Probability of a trajectory. The probability of occurrence of a trajectory
T is given by the composition of the probabilities of the transitions in T .

Let Tk be a sub-trajectory of T made up of its first k transitions, and T ik
ik−1

the
last transition in Tk. It holds:

P [Tk] = P [T ik
ik−1

] · P [Tk−1] = P [T ik
ik−1

] · P [T
ik−1

ik−2
] · P [Tk−2] = P [T0] ·

k∏

l=1

P [T il
il−1

],

where T0 denotes the sub-trajectory given by the initial domain only, and P [T0] gives
the probability that the initial inequalities are satisfied in V0. Thus, P [T0] = 1 in V0.
We observe that P [Tk] is a chain of conditional probabilities, and not the product of
independent probabilities, because each P [T ik

ik−1
] is a conditional probability which

requires the arrival in domain Dik−1
. Then, the probability of the entire trajectory

T , including k̄ transitions, is given by:

P [T ] =
k̄∏

l=1

P [T il
il−1

].
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Each conditional probability P [T ik
ik−1

] is given in accordance with the definitions
in the previous section. The range of variability Vik−1

and the probability density
function fik−1

(Ψ) required for the computation in (3.2) derive from the sub-trajectory
Tk−1. The range is:

Vik−1
= V0 ∩




Ψ ∈ R
nc :

q∏

j=1

1
d
(k−1)
j (Ψ)

= 1




 (3.6)

where d
(k−1)
j (Ψ) > 0 are the q inequalities associated with Tk−1.

The function fik−1
(Ψ) is then obtained by reducing the support of f0 (Ψ) to Vik−1

,

or by directly reducing the support of the a priori joint density (i.e.,
∏nc

j=1 fpriori
j (ψj))

to Vik−1
as follows:

fik−1
(Ψ) =






Qnc
j=1 f

priori
j (ψj)

R

Vik−1
[
Qnc

j=1 f
priori
j (ψj)]dψ1...dψnc

Ψ ∈ Vik−1

0 elsewhere

(3.7)

In general, the integrals over Vik−1
in (3.2) and (3.7) have not a closed-form

analytical solution because Vik−1
is usually not simple (according to the definition of

simple regions for multiple integrals) with respect to the components ψj . Hence, a
numerical solution is required. To this aim, we adopt the Monte Carlo integration
approach detailed in the Appendix.

The definitions given above apply to all of the three types of trajectories generated
by the simulation algorithm; namely, trajectories that reach a stable fixed point,
either directly or spiraling around it, and trajectories that move in a cycle. However,
spiraling and cycling trajectories require further discussion.

3.2.1. Spiraling trajectories. In this case, T spirals in a gradual progression
towards an asymptotically stable point xssp in a domain Df , called hub, where all
variables are at threshold intersection. This implies that a sequence of traversed
domains is repeated until the trajectory enters Df and the spiral stable point xssp is
reached. In the limit, at xssp, the Jacobian of the model has a specific structure and
sign pattern [14].

From a computational point of view, the repetition of the same sequence of tra-
versed domains should be avoided. Thus, as soon as a cycle around domains adjacent
to a hub is detected, i.e., a transition gets a domain Dk that coincides with a domain
Di previously visited in the sub-trajectory, the algorithm ascertains the presence of a
possible spiral stable point in the hub by checking the structure and sign pattern of
the Jacobian. If a spiraling behavior is recognized, in the solution tree the transitions
in the next cycles from Dk to the final hub domain Df are collapsed into a single
transition from Dk to Df . Let us remark that transitions in a spiral are uniquely
determined with probability equal to 1. Thus, the probability associated with the
entire trajectory P [T ] is not actually affected by the spiraling around Df , and can be
computed taking into account the transitions which are reported in the solution tree,
only.

3.2.2. Cycling trajectories. In the case a cycle is identified but a spiraling
trajectory is not detected, the same transitions can be repeated an infinite number
of times. As in the spiraling case, the solution tree does not contain the repeated
transitions but terminates in the domain Dk that identifies the cycle (see Fig.2.2).
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At each repetition of the cycle, both uniquely determined and mutually alternative
transitions have probability equal to 1 to remain in the cycle. Hence, if all of the
transitions in the cycle are as above, the next cycles have probability to be repeated
equal to 1, and P [T ] is not affected by the successive repetitions of the cycle, but it
is determined by the probabilities of the transitions actually present in the solution
tree, only.

In the presence of not mutually alternative transitions that branch from a domain
in the cycle (e.g., the transitions from D3 in Fig. 2.2), at each repetition, the proba-
bility to follow the cycle accounts for the probability to escape to domains other than
those in the cycle. Without loss of generality, let us consider a domain Dbr in the cycle
from which two not mutually alternative transitions branch. We denote the transition
that moves along the cycle by T cyc

br , and the one that escapes from the cycle by T esc
br .

At each next cycle repetition, Vbr ≡ Vcyc
br , and consequently Vesc

br \ Vcyc∧esc
br = ∅. The

trajectory goes along the cycle an infinite number of times for parameter values in
Vcyc

br \ Vcyc∧esc
br but it could escape from the cycle for parameter values in Vcyc∧esc

br .
In the former case, P [T ] is still not affected by the successive repetitions of the cycle
and computed by considering the transitions in the solution tree, only. In the lat-
ter one, P [T ] is still as above if cycle permanence is guaranteed; otherwise P [T ] is
upper bounded by the probability of its sub-trajectory T ∗ that starts from D0 and
terminates in Dk as calculated from the solution tree.

3.3. Back to the example. To illustrate how the proposed stochastic approach
works, let us consider the toy-example in subsect. 2.2.3.

As shown in Fig. 2.2, the simulation of model (2.8) from the initial domain D5

with the given initial parameter inequalities produces three trajectories. Two tran-
sitions subject to mutually alternative inequality systems branch from domain D15.
The transition T 15

15 occurs when parameter inequalities lead the motion to a stable
point in D15, and then identifies the final leaf of the trajectory T1. The other transi-
tion T 14

15 leads to a sub-trajectory that branches towards D8 and D4 with parameter
inequalities dD3,D8 and dD3,D4 , respectively, when D3 is reached. These two inequality
systems, that govern the transitions T 8

3 and T 4
3 , are not mutually alternative. More-

over, they are both always verified in the range VD3
as they replicate initial parameter

inequalities. Thus, P
[
dD3,D8

]
= P

[
dD3,D4

]
= P

[
dD3,D8∧D4

]
= 1 always occurs in-

dependently of the assumed parameter densities and, in accordance with (3.4), we
assign P

[
T 8

3

]
= P

[
T 4

3

]
= 0.5. In both branches from D3, the motion continues to

the final leaves of T2 and T3 without further ramifications: the branch towards D4

goes back to the initial domain D5, where a cycle is detected, and that one towards
D8 continues to D13 where a spiralling motion to a stable point in D7 is recognized.

Due to the presence of not mutual alternative transitions from D3, the actual
value of P [T3] is affected by the successive repetitions of the cycle and, in absence
of periodic solutions, the probability of remaining in the cycle tends to zero after
many passages. This holds for each parameter value as P

[
dD3,D8∧D4

]
= 1. As a

consequence, the solution tree includes only the sub-trajectories T ∗
2 and T ∗

3 of T2

and T3, respectively, that start from the initial domain D5 and end in the final leaf.
The computed value P [T ∗

3 ] is an upper bound for the actual value of the occurrence
probability of T3, whereas the computed value of P [T ∗

2 ] is a lower bound for P [T2].
In addition, due to the structure of the tree, it holds P [T ∗

2 ] = P [T ∗
3 ] = 1

2 (1 − P [T1]),
and P [T2] + P [T3] = 1 − P [T1].

The values of the trajectory probabilities depend on the densities of parameters
that appear in the inequalities, namely k10, k11, k12, k21, γ1, γ2, θ11, θ12 and θ21. To
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Case 1 Case 2 Case 3 Case 4

k10 N (7, 4) N (16, 4) N (5, 4) N (3, 4)
k11 N (−4, 4) N (−11, 4) N (0, 4) N (0, 4)
k12 N (−4, 4) N (3, 4) N (1, 4) N (4, 4)
k21 N (10, 4) N (12, 4) N (12, 4) N (10, 4)
γ1 Gamma (3, 1) Gamma (3, 1) Gamma (3, 1) Gamma (3, 1)
γ2 Gamma (10, 1) Gamma (10, 1) Gamma (10, 1) Gamma (10, 1)
θ11 U (0.8, 1.2) U (0.8, 1.2) U (0.8, 1.2) U (0.8, 1.2)
θ12 U (1.8, 2.2) U (1.8, 2.2) U (1.8, 2.2) U (1.8, 2.2)
θ21 U (0.8, 1.2) U (0.8, 1.2) U (0.8, 1.2) U (0.8, 1.2)

P [T1] 0.004 0.212 0.334 0.830
P [T ∗

2 ] 0.498 0.395 0.339 0.086
P [T ∗

3 ] 0.498 0.395 0.339 0.086
Table 3.1

Probabilities of the occurrence of the simulated dynamics for the toy-example in subsect.
2.2.3.for different choices of parameter distributions. The results are obtained by exploiting the
standard Monte Carlo integration, with 106 generated samples for each probability. All confidence
intervals of the estimated probabilities are below 0.001. We remark that T ∗

2
and T ∗

3
refer to the

sub-trajectories that end in the respective final leaf of the solution tree.

analyze the dependence of the trajectory probabilities on parameter distributions, we
assume normal densities for kij , Gamma densities for γi, and uniform distributions
for θij in accordance with the modeling assumptions, and we consider four cases that
differ for the expected values of the normal densities assigned to kij (Table 3.1).

The results in Table 3.1 are obtained with the standard Monte Carlo integration,
considering 106 samples for each inequality system to evaluate. They highlight the
dependence of trajectory probabilities on the expected values of kij . P [T1] ranges
from values close to 0 to values close to 1. Coherently with the inequality systems,
P [T1] increases, and P [T2]+P [T3] decreases, while the expected value of k10+k11+k12

in V15 (i.e., the expected value of the a priori densities after restricting the support to
V15) becomes higher than the expected value of γ1θ12 in V15, and vice versa. In fact,
at the first branching, T 15

15 in T1 requires k10 + k11 + k12 > γ1θ12, and T 14
15 in T2 and

T3 requires k10 + k11 + k12 < γ1θ12. Hence, while the expected value of the left-hand
side of the two reported inequalities increases in V15 with respect to the right-hand
one, P [T1] increases, and vice versa.

With regard to the number of useful samples, in all cases only a small part of
the samples generated with the a priori densities belong to V5 (about 5%). Thus,
a relevant part of the generated 106 samples is excluded from the evaluation of the
probabilities. However, the number of useful parameters is such that the confidence
interval of all of the estimated probabilities is always below 0.001.

4. An example from synthetic biology: the repressilator. In the word of
[7]: A general obstacle to the design of biochemical networks is the uncertainty about

the values of parameters that characterize the interactions between different compo-

nents. Precise parameter values required in deterministic models lack the realistic
variability that is inherent in every biological system. Then, in the context of model-
based design for synthetic networks it is necessary to work with stochastic parameters.

Let us now consider a pioneering example in synthetic biology to show how the
method proposed in this paper can provide a higher probability of a desired or unde-
sired behavior by properly choosing network parameter distributions. More precisely,
we consider a repressilator synthetic network in Escherichia coli, consisting of three
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Fig. 4.1. Three gene repressilator network implemented by Elowtiz and Leibler in [7]. (a)
Schematic drawing of the network. (b) Temporal evolution of typical trajectories of (4.1). Numerical
simulations were run in Berkeley Madonna, RK4 method with time-step=0.01 for initial xi(0) =
(0.5, 0.8, 0.9), (i = 1, 2, 3), with the following parameters: q = 0.01, θi = 1, ki1=(8.35,15.42,29.34)
and γi=(6.89,8.72,17.69) for oscillations (top) and γi=(8.89, 10.72,20.69) for stable trajectories
(bottom).

genes lacI, tetR, and cI, in which each gene represses its successor in a cycle [7]. Both
experimental study and mathematical modeling confirm that the dynamical trajecto-
ries of this system can be classified into two types: either they converge to a steady
state or they oscillate (Fig. 4.1).

We adapt the gene network to our framework (2.1) starting from its six-variable
ODE model, with the only change of collapsing the translation into the transcription
process. This results in a three-variable ODE model where each variable is associated
with one threshold and the repression of a gene is represented by the (1 − Z) term.
The equations are given below:

ẋ1 = k10 + k11(1 − Z31) − γ1x1,

ẋ2 = k20 + k21(1 − Z11) − γ2x2,

ẋ3 = k30 + k31(1 − Z21) − γ3x3.

(4.1)

We consider the scenario with no ‘leakiness of the promoter’ in this artificial
system. Thus, we can ignore parameters ki0 (with i = 1, 2, 3) and let them equal
to zero. Starting from the initial domain D1 (in which 0 < xi < θi1) with initial
inequalities ki1 > γiθi1, the simulation algorithm generates a solution tree with cyclic
trajectories only. To obtain both types of dynamical behaviors, we relax the initial
inequality on k31 by putting no restrictions. The result is a tree with five qualitative
trajectories, three of which are cycles and two terminate in a stable point in D3, in
which x1 > θ11 and x2, x3 as in D1 (Fig. 4.2). The systems of inequalities from D3

are mutually exclusive: k31 < γ1θ31 leads to a stable point in D3, whereas k31 > γ1θ31

leads to D12, in which x3 = θ31 and x1, x2 as in D3. The initial branching from D1

consists of three not mutually alternative transitions whose probabilities are assigned
by equally accounting for the non-empty intersections of ranges VD2

D1
, VD10

D1
and VD4

D1

as described in Section 3.1.

19



Fig. 4.2. Solution tree of the repressilator network with initial inequalities k11 > γ1θ11 and
k21 > γ2θ21. The tree shows the five possible trajectories generated starting from D1; three trajec-
tories are cycles (T2, T3, T5) and two trajectories (T1, T4) end as stable points in D3.

T1

T2 T3

T4

T5

The probability of each trajectory in the tree is calculated by assigning a prob-
ability distribution to each model parameter. The probability of the occurrence of
either a cyclic trajectory P [Tc] or a trajectory ending in a stable point P [Ts] is
then obtained by properly summing up the probabilities of the trajectories in the
tree. More precisely, T2, T3 and T5 are related to a cyclic behavior and P [Tc] =
P [T2]+P [T3]+P [T5], and T1 and T4 end in a stable point and P [Ts] = P [T1]+P [T4].
Obviously, P [Tc] + P [Ts] = 1.

For this network, we are in presence of very incomplete knowledge of parameter
values, and we only know that all of them are positive. Following [7], we assume that
all parameters of the same type are identically distributed in the a priori densities:
production rates k11, k21 and k31 are identically distributed, degradation rates γ1,
γ2 and γ3 are identically distributed, and thresholds θ11, θ21 and θ31 are identically
distributed. To start the stochastic analysis, we assign uniform distributions to all
parameters. In all cases, we assume θi1 ∼ U (0.7, 1.3), while different minimum and
maximum values are explored for ki1 and γi. The results are reported in Table 4.1.

From these results we can provide a coarse stability diagram with stochastic
parameters, where on the x-axis we report the production rate (k) and on the y-axis
the degradation rate (γ) (Fig. 4.3a). The probability of obtaining a cycle gets its
highest value in case (iv) and its lowest one in case (ii), and vice versa as for the
probability for a trajectory to end in a stable point. Moreover, case (i) has almost
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case ki1 γi P [T1] P [T2] P [T3] P [T4] P [T5] P [Tc] P [Ts]

(i) U (1, 6) U (1, 6) 0.204 0.211 0.169 0.205 0.211 0.592 0.409
(ii) U (1, 6) U (6, 10) 0.487 0.014 0.007 0.487 0.005 0.026 0.974
(iii) U (6, 15) U (6, 10) 0.086 0.286 0.256 0.086 0.286 0.827 0.173
(iv) U (6, 15) U (1, 6) 0.002 0.333 0.332 0.002 0.333 0.997 0.003
(all) U (1, 15) U (1, 10) 0.125 0.262 0.226 0.124 0.262 0.751 0.249

Table 4.1

Probabilities of the occurrence of the simulated dynamics of the repressilator network in Fig.
4.2. The results are obtained by assigning uniform distributions to model parameters and by ex-
ploiting the standard Monte Carlo integration, with 106 generated samples for each probability. All
confidence intervals of the estimated probabilities are below 0.001.
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Fig. 4.3. Phase diagrams of k versus γ in system (4.1). (a) Stability diagram with stochastic
parameters where the probability of cyclic trajectories P (Tc) is reported in each region; dashed lines
mark the boundary of the uniform probability distributions of γ and k for each case (i)-(iv), as de-
scribed in Table 4.1. (b) Stability diagram generated by numerical integration of the ODE equations
in Berkeley Madonna, RK4 method with q = 0.01, θi = 1, and for each γ and k scanned with step
0.1 in [1, 10] and [1, 15], respectively. Values of k and γ taken in the grey or in the white region give
rise, respectively, to oscillatory trajectories or stable trajectories.

equal probabilities P [Tc] and P [Ts], and case (iii) has a higher probability P [Tc] that
a cycle occurs.

To confirm our stochastic findings, we carry out numerical simulations to establish
a stability phase diagram with k and γ as before (Fig. 4.3b). Let us observe that
the latter diagram has the same structure and form as Fig.1b in [7], and matches the
stochastic results, as expected.

To make a more refined phase diagram with stochastic parameters, we can further
refine cases (i) and (iii) by either narrowing the range of the uniform distribution or
changing the shape of the distribution.

To analyze how probabilities vary with distributions for parameters ki1 and γi,
we consider a distribution with a different shape, and concentrated around a value
in the uniform interval previously analyzed by adopting truncated Gaussian densities
T N

(
µ, σ2, α, β

)
. Table 4.2 reports the results obtained by considering, by turns,

truncated Gaussian densities concentrated in different peaks for one parameter and
uniform distribution for the other. More precisely, we consider a uniform distribution
for ki1 and truncated Gaussian densities for γi with different peaks for refining case
(i), and the other way round for refining case (iii).

Coherently with the phase diagram (Fig. 4.3), it can be observed that in cases
(ia)-(id) P [Tc] increases while γi densities are concentrated close to the lower boundary
(equal to 1) and decreases while they are concentrated close to the upper boundary
(equal to 6). Similarly in cases (iiia)-(iiif ), P [Tc] decreases while ki1 densities are
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case ki1 γi P [Tc] P [Ts]

(ia) U (1, 6) T N (2, 4, 1, 6) 0.703 0.297
(ib) U (1, 6) T N (3, 4, 1, 6) 0.629 0.371
(ic) U (1, 6) T N (4, 4, 1, 6) 0.551 0.450
(id) U (1, 6) T N (5, 4, 1, 6) 0.471 0.528

(iiia) T N (7, 4, 6, 15) U (6, 10) 0.592 0.408
(iiib) T N (8, 4, 6, 15) U (6, 10) 0.675 0.326
(iiic) T N (9, 4, 6, 15) U (6, 10) 0.761 0.239
(iiid) T N (10, 4, 6, 15) U (6, 10) 0.842 0.158
(iiie) T N (11, 4, 6, 15) U (6, 10) 0.904 0.096
(iiif ) T N (12, 4, 6, 15) U (6, 10) 0.946 0.054

Table 4.2

Probabilities of the occurrence of the simulated cycles and trajectories ending in a stable point
of the repressilator network in Fig. 4.2. The results are obtained by assigning a uniform distribution
and a truncated Gaussian distribution, respectively, either to model parameters ki1 and γi (cases
(ia) - (id)) or to model parameters γi and ki1 (cases (iiia) - (iiif )), and by exploiting the standard
Monte Carlo integration, with 106 generated samples for each transition probability.

concentrated close to the lower boundary (equal to 6) and increases while they are
concentrated close to the upper boundary (equal to 15).

5. Discussion and conclusions. This paper deals with a method for assigning
the probability of occurrence to the qualitative dynamics of gene regulatory models
with steep sigmoid functions encompassed by (2.1) with given initial conditions. The
initial state and parameters are not given a specific value but qualitatively and sym-
bolically expressed through ranges of values defined in terms of order relations only.
The full range of linear and nonlinear dynamics with different time scales is predicted
by a simulation algorithm grounded on sound rules that implement the singular per-
turbation method adapted to the considered class of models. Each trajectory in the
solution tree captures the qualitative properties of the network dynamics that depend
only on the network structure and are invariant for ranges of parameter values that,
in agreement with the initial ones, are symbolically calculated during the simulation.

The deterministic trajectories are then given a probability of occurrence by as-
signing a measurement of uncertainty to the parameter values. These are not equally
known, and we can distinguish different scenarios where either all the parameter val-
ues are highly unknown or a subset, or the entire set, of parameter values are certain
to some extent. Our method is able to integrate different levels of parameter knowl-
edge from very incomplete to almost certain. In case of very incomplete knowledge,
all parameter values are assumed to be uniformly distributed over their possible range
of variability, or in other words they are assigned non-informative distributions, and
the calculated probabilities derive from the sequence of parameter constraints and the
multiple branching that characterize each single trajectory. When a certain knowl-
edge is available, an informative distribution is assigned and is effectively used to
compute the occurrence probability of the trajectories. The higher the knowledge of
the network, the higher the number of coefficients with an informative distribution
and the lower the standard deviation of these distributions. Parameter values with
low variability increase accuracy and significance of the computed probabilities and
contribute to better delimit those trajectories with a non-negligible probability to
occur.

To get a complete view of the network dynamics by applying traditional nu-
merical integrations of ODEs with stochastic coefficients is very hard and almost
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impracticable. These methods provide one specific trajectory or subset of similar tra-
jectories and, then, the integration should be repeated a great number of times with
different coefficient configurations extracted from their respective density functions.
However, also whenever a complete study is possible, the ranges of parameter values
that characterize classes of qualitatively different behaviors need for post-processing
to be identified. From a computational point of view, the ODE solution is com-
putationally intensive, as it is iteratively performed on a discretized version of the
equation by using Monte Carlo simulations or, in some cases, Markov Chain Monte
Carlo methods, which require a high computational effort. In our case, probabilities
are still calculated by a Monte Carlo integration. It still requires repetitions, but the
computational burden for integrating a product of Bernoulli variables is extremely low
in comparison to the effort required by the numerical solution of stochastic ODEs, so
much so that standard Monte Carlo integration is sufficient to compute probabilities
with reasonable computational times.

The herein proposed method is general, and it is applicable to study the dynam-
ics of regulatory systems based on activation thresholds from application contexts,
biological or not, other than natural or synthetic GRNs.

In the GRN context, the overall method can be used (1) to predict the full range
of possible dynamics, along with their probability of occurrence, of a network in re-
sponse to different perturbations or stimuli and finally (2) to develop control strategies
aiming at leading the cellular system toward a desired state or away from an undesired
state that may possibly be associated with a disease with the highest probability. Al-
though methods exist for inferring the network structure from gene expression data, it
currently finds its natural workbench in synthetic biology where the design of network
structures with suitable connections and parameter constraints to produce a desired
behavior is the key issue. The usefulness of our method comes from allowing the
network designer to test different hypothesized network connections and from being
able to give parameter suggestions also without prior knowledge. We think that it
is progress to be able to provide relationships between parameters values (i.e., in-
equalities) and the range of parameters to increase chances of desired (or undesired)
behavior. However, physical or biological limitations could prohibit modification to
the range of parameters; therefore, it might be more likely that certain parameter
values happens at a higher probability than others. As we have shown on the gene re-
pressilator system, a further control of the shape of the probability distribution could
also fine-tune and additionally increase the probability of success. The automated
control of both support and shape of probability distributions to maximize/minimize
the occurrence probability of desired/undesired behaviors, quite challenging in the de-
sign context of synthetic networks, requires the development of optimization methods
ad hoc.
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Appendix: Monte Carlo integration approach. The integral that gives
the probability associated with a system of inequalities da,∗, where * indicates the
domain a transition occurs towards, is numerically computed by a repeated Monte
Carlo sampling of the parameter set Ψ from its joint density function fa (Ψ). More
precisely, a set Ψ(c) is generated at each sampling c, and the satisfaction S(c) of the
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system da,∗ for sample c is computed as:

S(c) =

m∏

j=1

1
d

a,∗
j (Ψ(c)). (5.1)

where S(c) is obviously equal only to 1 (system satisfied) or 0 (system not satisfied).
The sampling process is repeated a high number of times ns, and the expected value
and the variance of S(c) are computed as follows:

E
[
S(c)

]
=

∑ns

c=1 S(c)

ns

; (5.2)

V ar
[
S(c)

]
=

∑ns

c=1

(
S(c) − E

[
S(c)

])2

ns − 1
. (5.3)

According to the central limit theorem, E
[
S(c)

]
is the estimator P̂ [da,∗] of P [da,∗]

and converges while ns increases. The confidence interval of the estimator

σ
bP [da,∗] =

√
V ar

[
S(c)

]

ns

(5.4)

decreases while the number ns of samples increases.
Operatively, the most simple way to sample Ψ from fa (Ψ) consists of extracting

values ψi from their known a priori independent densities fpriori
i (ψi). The resulting

set Ψ(c) is exploited for the computation of the probability only if Ψ(c) ∈ Va. Then,
(5.2) is modified as follows:

E
[
S(c)|Q(c)

]
=

∑ns

c=1 S(c)Q(c)

∑ns

c=1 Q(c)
, (5.5)

where Q(c) = 1 if Ψ(c) ∈ Va, and Q(c) = 0 elsewhere. Coherently:

σ
bP [da,∗] =

√√√√
∑ns

c=1

[(
S(c) − E

[
S(c)|Q(c)

])2
Q(c)

]

∑ns

c=1 Q(c)
[(∑ns

c=1 Q(c)
)
− 1

] . (5.6)

The number nus of useful samples, i.e. those with Q(c) = 1, is in general lower
than the ns generated ones but, in most cases, the ratio nus/ns is adequate to get
an acceptable convergence rate of the Monte Carlo integration. This is not the case
when nus ≪ ns. In the latter case, two variants of the Monte Carlo integration can
be considered to make the converge rate faster, namely the importance sampling and
the sequential sampling [20, 28]. Whereas the latter variant can still work on the
same equation (3.2) as the standard approach, the former one operates on a modified
equation that in our framework can be obtained as suggested in the following.

The samples for evaluating the current transition T b
a are generated in accordance

with a new density function ga (Ψ), which is concentrated around the expected value
of samples in Σ, where Σ is the set of samples with |Σ| = ms, evaluated in the
previous transition for which S(c) = 1, and Q(c) = 1. In detail, a normal probability
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density function ha,i (ψi) is introduced for each ψi ∈ Ψ, with expected value µi and
variance σ2

i :

µi =
1

ms

ms∑

j=1

ψ
(cj)
i σ2

i = η

∑ms

j=1

(
ψ

(cj)
i − µi

)2

ms − 1

where η is a scaling coefficient for variance and samples ψ
(cj)
i are taken from Σ. The

densities ha,i (ψi) are independent, and their product defines the joint probability
density function ha (Ψ). Finally, we define ga (Ψ) as a mixture between ha (Ψ) and
the original fa (Ψ) over Va:

ga (Ψ) =

{
ωfa(Ψ)+(1−ω)ha(Ψ)

R

Va
[ωfa(Ψ)+(1−ω)ha(Ψ)]dψ1...dψnc

Ψ ∈ Va

0 elsewhere
(5.7)

where the weight ω ∈ [0, 1] allows us to balance the mixture.
The conditional probability of (3.2) is then modified as follows:

P [da,∗] =

∫

Va



fa (Ψ)

ga (Ψ)

m∏

j=1

1d
a,∗
j (Ψ)



 ga (Ψ) dψ1 . . . dψnc
. (5.8)

The denominators of fa (Ψ) and ga (Ψ), reported in (3.7) and (5.7), respectively,
are computed with a Monte Carlo sampling and, then, the computation of (5.8) is
carried out with a further sampling. Although three integrals have to be computed,
the importance sampling is computationally more convenient than the standard Monte
Carlo sampling in the case of rare event simulation with nus ≪ ns, as it requires a
lower number of generated samples to reach the same convergence of the estimation,
i.e., the same σ

bP [da,∗] [20, 28].
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