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DATA IN THE WAVELET DOMAIN

DWT “Rotates” Data.

Dimension of Data Preserved.

Entropy Reduced [Amenability to Shrinkage].

Self-Similarity Visible.

Scales/Frequencies Separated.

Data Whitened.

Also, Wavelet Transformations are Fast, Lossless, Versatile.
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DATA W−→ Wavelet Coefficients

‖

Processed DATA W−1←− Process the Coefficients

Process ≡
Shrink

Transform

Simulate New

Resample

etc.
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Multiscale Domains: 1

Various Wavelet Transformations: Continuous, Orthogonal,
Non-Decimated (Stationary), Wavelet Packets, Complex, etc.

Focus on Discrete, and because of energy preservation →
Orthogonal.

y (time series) W−→ d = [cJ0 , dJ0 , dJ0+1 . . . dJ−2, dJ−1].
J0, J0 + 1, . . . , J − 1 scales ranging from the coarsest to the
finest.

`(y) = 2J , `(dJ−1) = 2J−1 [it decimates],. . . , `(dJ0) = 2J0 ,

`(cJ0) = 2J0 ; Thus, `(d) = 2J .

ON Wavelet transformations are rotations in the 2J

dimensional space where data are points. Amazingly, the
rotations bring many coordinate axes closer to the data point.
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Multiscale Domains: 2

Why Wavelet Domains? Wavelets “Disbalance” the data,
Filter the data, Assess self-similarity, they are Fast, Versatile,
and Whitening.

Focus on Whitening Property. Well explored when inputs
possess some stochastic structure. Inhibiting the
forcasting/prediction by wavelets.

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

doppler signal
−0.5 0 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

y(i)

y
(i

+
1

)

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

d(i)

d
(i

+
1

)
References: Flandrin, 1992; Tewfik & Kim 1992; Walter,

1994; Johnstone & Silverman, 1997; Craigmile et al, 2000.
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Bootstrap 1

Bootstrap (Efron & Tibshirani, 93), Powerful and
Controversial Technique. Bootstrap Originally designed for
i.i.d. (independent, identically distributed) data.

Analogous Technique: Surrogate Data (Theiler et al., 92).
Mainly used for testing nonlinearity in observed time series.

When data are dependent, either do (i) block bootstraping
(block jackknifing), (ii) whiten and bootstrap, or (ii) BOTH.

Moving Block Bootstrap (MBB), (Künsch, 89); Stationary
B (Politis & Romano, 94) Lin. Comb. Varying Size BB
(Politis and Romano, 95); Matched BB; Circular B;
Non-overlapping BB (NBB); Missing Data Bootstrap
(Alfonso et al, 2003).
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Bootstrap 2: Hidalgo Stamps

Mexico, Issue 1872; n = 485 Izenman & Sommer, JASA
1988; Different papers used;
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Bootstrap 3: Hidalgo Stamps
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Test for number of modes.

Gaussian kernel density estimator with h = 0.00333
(border-line between 2- and 3-modal estimator).

y → y∗1, y
∗
2, . . . , y

∗
B.

B density estimators (h = 0.00333) based on y∗i
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Bootstrap 4: Hidalgo Stamps

Count # of modes: n1 (one), n2 (two), etc.

H0 : #ofmodes = 2 vs H1 : #ofmodes > 2
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ASV (empirical counterpart to p-value) is about 0.5.
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Bootstrap and Multiscale Domains: ♥ 1

Under-researched. Wavelets are Time/Scale representations
and Bootstrap is scrambling Time information.

Bootstrap Shrinkage: Possible? Yes. Any research? No.

Resample detail levels and average. Resembles Stochastic
Resonance.
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Bootstrap and Multiscale Domains:♥ 2

More sophisticated method: Skeleton BootWave

Procedure:

(i) Make the time/scale skeleton [say surviving coefficients of
universal (or any under-fitting) thresholding method];

(ii) fill-in the “meat” by resampling the discarded
(thresholded) coefficients.

(iii) Average for the estimator;

(iv) Use envelope for the error bands.

Competitive Shrinkage Technique when: (i) Skeleton is
sparse; (ii) B- the number of bootstrap resamples is large.
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Bootstrap and Multiscale Domains: 3

Percival’s Wavestrap (Percival et al., 2000)

Adaptive Wavestrap via Wavelet Packets. Best basis is the
most decorrelating basis. Criteria: whiteness of scales in WP.
If a scale not white enough, go to its “children” and check
their whiteness.

(Percival et al, 2000), Estimating the variance of ρ(1)-
one-lag autocorrelation [n = 1024, B = 10, 000, Symm 8]

DWT DWPT actual

AR(1) φ = 0.9 0.016 ± 0.001 0.015 ± 0.001 0.014

MA(1) θ = 0.98 0.026 ± 0.001 0.024 ± 0.001 0.022

FD d = 0.45 0.047 ± 0.004 0.047 ± 0.003 0.053
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Bootstrapping Turbulence

Turbulence is not a “long memory” but it has long memory
(in an antipersistent sense).

Pointwise bootstrap whitens the runs.

For estimating fluxes keep the bootstrapping policy the
same.

U, V, W , and T collected over a grass-covered forest clearing
at Duke Forest near Durham, North Carolina. The
measurements were collected on July, 12-16, 1995 at 5.2 m

above the grass surface using a Gill triaxial sonic
anemometer.



15

Stationary Bootstrap in the Wavelet Domain

Stationary Bootstrap: Random level-block size. Block
Length Geometric G(pj). Asymptotically optimal choice
pj = O(2−j/3). For turbulence experiments recommend
p = 1/30. and 6-8 vanishing moments for the wavelet basis.

Single Run U , Duke Forest measurements by Gaby Katul
G950713.04. Block Length Geometric G(0.15).
Ĥ = 0.3334, σĤ = 0.0216.
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“Nature” Bootstrap

Ten Runs U , Duke Forest measurements by Gaby Katul
(Unstable Conditions).
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Figures from Italy
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Simulated Data fBm(1/3)

Mimics Second Order Properties of Turbulence.

Trade-off Between Bias and Variance

Wavestrap or Stationary Bootstrap with small expected
block-size: Estimators biased (whitened) but variability
preserved.

Stationary bootstrap with large expected block-size:
Estimators close to theoretical, but variance small.
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fbm(1/3)

lag 0 1 2 3 4 5

ρ̂ 1.0000 0.9947 0.9915 0.9888 0.9863 0.9841

σρ̂ 0 0.0036 0.0057 0.0075 0.0091 0.0106

ρ̂W 1.0000 0.9793 0.9664 0.9553 0.9456 0.9356

σρ̂W
0 0.0029 0.0045 0.0058 0.0074 0.0088

ρ̂S 1.0000 0.9926 0.9887 0.9842 0.9811 0.9779

σρ̂S
0 0.0008 0.0012 0.0016 0.0020 0.0024

length = 213,Symmlet 8, # of bootstrap replicates=400,
Block Sizes Geometric(0.1).
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An Additional Method: Waveknife

Keep data length as power of 2 or a multiple of a power of
2.

Erase block(s) and estimate the missing data from the
remaining data, levelwise.

Combine with “parametric”, model based bootstrap. When
the input is fBm or turbulence measurements, levels well
modeled by ARMA(p, q) processes, p, q < 5.

First numerical experiments indicate low variability.
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CONCLUSIONS

Stationary Bootstrapping useful technique in getting the
estimators and their variability from a single vector of
measurements.

Methodology sensitive to selection of wavelet basis, more
research needed.

Bias-Variance trade-off.

Potential in Wavelet-Shrinkage-type of problems.

Bootstrapping multifractal spectra in Turbulence.


