Convex Rearrangements

For a process X(t), $t \ge 0$ with stationary increments, observed at times $0, 1/N, \dots, (N-1)/N$ define increments

$$Y_{k,N} = X((k+1)/N) - X(k/N), k = 0, 1, \dots, N-1.$$
 (1)

Let, further $Y_{0:N} \leq Y_{1:N} \leq \cdots \leq Y_{(N-1):N}$ denote the order statistic of Y's from (1).

A convex rearrangement of X(t) is defined as

$$\mathcal{V}X_N(t) = X(0) + \sum_{i=0}^{[Nt]-1} Y_{i:N} + (Nt - \lfloor Nt \rfloor) Y_{\lfloor Nt \rfloor:N},$$

The sequence $Y_{k,N}$, $k=0,1,\ldots,N-1$ is stationary with variance $\sigma_N^2=\mathbb{E}Y_{1,N}^2$ and covariance $\gamma_N(h)=\mathbb{E}Y_{k,N}$ $Y_{k+h,N}$.

Davydov (1998), Davydov and Thilly (2000), and Phillippe and Thilly (2002) investigated the asymptotic behavior of normalized $\mathcal{V}X_N(t)$ for broad classes of Gaussian and α -stable processes.

Theorem 0.1 (DAVYDOV AND THILLY, 2000) –

Let for each $h \in \{1, 2..., N-1\}$

[CONDITION
$$\mathcal{A}$$
] $\left| \frac{\gamma_N(h)}{\sigma_N^2} \right| \leq \min\{1, K \cdot (\ln h)^{-1-\tau}\},$

for some fixed positive constants K and τ . Denote by

$$L(t) = \int_0^t \Phi^{-1}(s)ds = -\frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(\Phi^{-1}(t)\right)^2\right\},\,$$

where Φ is the c.d.f. of a standard normal distribution. Then, when $N \to \infty$,

$$\frac{\mathcal{V}X_N(t)}{b_N} \to L(t), a.s.$$

Example 0.1 Let $B_H(t)$ be the fractional Brownian motion with the exponent H and $\mathcal{V}B_{H,N}(t)$ it convex rearrangement. Since $\sigma_N^2 = \mathbb{E}Y(1,N)^2 = \mathbb{E}B_H(1/N)^2 = C \cdot (1/N)^{2H}$. Then, the condition \mathcal{A} in Theorem 0.1 is satisfied and when $N \to \infty$ almost surely on [0,1],

$$\frac{1}{N^{1-H}\sqrt{C}} \mathcal{V}B_{H,N}(t) \to L(t). \tag{2}$$

Figure 1: Approximation of $\int_0^t \Phi^{-1}(s)ds$ (solid line) by normalized $VB_{H,N}$ for H=0.4 and N=128 (-), 512 (-), and 2048. (..)

By solving (2) with respect to H, on can propose a family of consistent estimators of H, indexed by a continuous parameter $t_0 \in$

(0,1). That opens an interesting question of design which t_0 to select.

Let the self-similar process X(t), $t \ge 0$ satisfies the hypothesis \mathcal{A} in Theorem 0.1. Let $t_0 \in (0,1)$ and let

$$\hat{E}(N, t_0) = 1 - \frac{\log |\mathcal{V}X_N(t_0)/\sqrt{C}L(t_0)|}{\log n}.$$

Then $\hat{E}(N, t_0) \longrightarrow H$, a.s., when $N \to \infty$.

Figure 2: Estimators $\hat{E}(N,t)$ for H=0.4, and N=2096

Let $X(t),\ t\geq 0$ be a selfsimilar process satisfying $\mathcal A$ and let $\mathbf g$ be the filter. If the convex rearrangements are applied on the $\mathbf g$ -filtered process $Y\left(\frac{k}{N}\right)=\sum_{n=0}^{\ell}g_nX\left(\frac{k-n}{N}\right),\ k=0,1,\ldots,N-1$ the resulting polygonal process $Y_N(t)=Y\left(\frac{k}{N}\right)+(Nt-k)\left[Y\left(\frac{k-1}{N}\right)-Y\left(\frac{k}{N}\right)\right],$ satisfies the condition $\mathcal A$ as well, and

$$\frac{1}{b_N} \mathcal{V} Y_N(t) \longrightarrow L(t), a.s., \text{ when } N \to \infty,$$
 (3)

where $b_N = N\sigma_N(\boldsymbol{g})$. The filter \boldsymbol{g} of length ℓ has to be selected in such a way so that the variance $\sigma_N(\boldsymbol{g}) = \mathbb{E} \left| Y(\frac{k-1}{N}) - Y(\frac{k}{N}) \right|^2$ is not 0. Sufficient condition is that $f(s) = \sum_{i,j=0}^{\ell} g_i g_j |i-j|^s$ does not vanish for $s \in (0,2)$ for the selected filter \boldsymbol{g} .

The double filtering of X(t) in (3) can be replaced by a single filter \boldsymbol{g} with properties $\sum_n n^r g_n = 0$, $0 \le r \le p-1$ and $\sum_n n^p g_n \ne 0$. Indeed, only the existence of first vanishing moment allows the decomposition of \boldsymbol{g} to convolution of $\{1, -1\}$ and a finite filter \boldsymbol{u} of length $\ell - 1$.

Thus denote *g*-convex rearrangement of X(t) as

$$\mathcal{V}X_{\boldsymbol{g},N}(t) = X(0) + \sum_{i=0}^{[Nt]-1} Y_{\boldsymbol{g},(i:N)} + (Nt - \lfloor Nt \rfloor) Y_{\boldsymbol{g},(\lfloor Nt \rfloor:N)},$$

where $\{Y_{\boldsymbol{g},(0:N)},\ldots,Y_{\boldsymbol{g},(N-1:N)}\}$ is order statistics for the sequence $Y_{\boldsymbol{g}}\left(\frac{k}{N}\right)=\sum_{n=0}^{\ell}g_{n}X\left(\frac{k-n}{N}\right)$, for $k=0,1,\ldots,N-1$.

Let g^d be dilation of filter g obtained by inserting d-1 zeros between non-zero filter taps. For example, for $g = \{1 - 2 \ 1\}$ the 3-dilated filter is $g = \{1 \ 0 \ 0 \ -2 \ 0 \ 0 \ 1\}$.

Theorem 0.2

Let

$$\mathbb{D}(N, d_1, d_2, t_0) = \frac{\mathcal{V}X_{\mathbf{g}^{d_2}, N}(t_0)}{\mathcal{V}X_{\mathbf{g}^{d_1}, N}(t_0)}.$$
 (4)

Then for any $t_0 \in [0, 1]$, and integers d_1 , and d_2 ,

$$\frac{\log |\mathbb{D}(N, d_1, d_2, t_0)|}{\log(d_2/d_1)} \longrightarrow H, \ a.s.$$

Figure 3: Estimation of H by (4). See the figconcre3.m

APPENDIX: MATLAB PROGRAMS

```
%-----
close all
clear all
family = 'Symmlet'; par = 4;
k1 = 2; k2 = 3; H= 0.4; seed = 1;
n = 128 * 1024;
b = (0.1:0.01:0.9);
baseline = [];
for seed = 1:5
%-----
a = MakeFBMNew(n, H, seed);
filt = MirrorFilt(MakeONFilter(family, par));
filtd1 = dilate_filter(filt,k1);
filtd2 = dilate_filter(filt,k2);
y1 = conre(b,a, filtd1);
y2 = conre(b,a, filtd2);
z = y2./y1;
zz = log2(abs(z))./log2((k2+1)/(k1+1));
plot(zz)
  hold on
plot(H*ones(length(zz)))
  hold on
baseline = [baseline; zz];
plot(mean(baseline),'r-')
```

REFERENCES

- Davydov Yu., Thilly E., Convex rearrangements of Gaussian processes. Theory of Probability and its Applications.
- Philippe, A. and Thilly, E., Identification of locally self-similar Gaussian process by using convex rearrangements, Methodology and Computing in Applied Probability Vol 4, N2, p 195-207, (2002)