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P L A N

1. Multifractal Spectra

2. Bin’s Three Point Summary of Multifractal Spectra
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Wavelet-based Multifractal Spectrum

The wavelet-based calculation of a multifractal spectrum depends on the

concepts of partition function and Legendre transform.

The partition function T (q) is defined using wavelets as

T (q) = lim
j→−∞

log2 E|dj,k|q ,

where dj,k is the L1-normalized wavelet coefficient at level j and position index

k, and q is the moment-order.

Normalization: ψj,k(x) = 2−jψ(2−jx− k).

Parameter q is real and can be positive or negative. However, the

interpretation of negative moments is still not clear (or physical).

Even though partition function is informative, the singularity measure is not

explicit. It has been proposed by Arneodo and his team in the early 1990’s that

the local singularity strength can be measured in terms wavelet coefficients as:

α(t) = lim
k2j→t

1

j
log2 |dj,k|
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It has been shown (Jaffard, 1995) that the wavelet coefficients preserve the

scaling behavior (global + local) of the process conditionally the wavelet is

more regular than the process itself.

α(t) measures the “intensity of oscillations” of the process at time t. Small

values of α(t) reflect more irregular behavior at time t.

Any process path has a collection of local singularity strength measures and

their distribution f(α) forms the multifractal spectrum. A direct way to obtain

this spectrum is to use the counting technique,

f(α) = lim
ε→0

#{α(t) : α− ε < α(t) < α + ε,−∞ < t < ∞}.

This method is not practicable due to the difficulty of approximating the

limit. A useful tool to improve the estimation efficiency is the Legendre

transform. The Legendre transform of the partition function is

fL(α) = inf
q
{qα− T (q)}.

It can be shown that fL(α) converges to the true multifractal spectrum using

the theory of large deviations.
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mfspectra

function [f,alfa]=mfs(data,q,j1,j2,L,wavelet,par)

%function [f,alfa]=mfs(data,q,j1,j2,L,wavelet,par)

%

% Input:data---the input signal vector;

% q------the range of moment orders (usually -1...6, or similar)

% j1,j2-----the range of interest scale(min and max)

% L,wavelet,par----parameters for wavlet decomposition

% Output: f----multifractal spectrum f(alpha)

% For example: [a,b]=mfs(m,-1:0.2:6,3,10);

% where m is the fractal signal, such as fbm(1/3) with 2^16 length.

% q=[-1,6] with equal space 0.2. [j1, j2]=[3,10]

% reference:P. Goncalves, R. H. Riedi and R. G. Baraniuk

% Simple Statistical Analysis of Wavelet-based

% Multifractal Spectrum Estimation,

% Proceedings of the 32nd Conference on ‘Signals,

% Systems and Computers’, Asilomar, Nov 1998
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if nargin == 4, wavelet=’Daubechies’; par=20; L=2;end; %defaults

nn=length(data);

lnn= log2(nn);

% need active path to WaveLab801 at this point!!!

wf = MakeONFilter(wavelet, par);

wddata = FWT_PO(data, L, wf);

for i = L:(lnn-1)

j=lnn-i;

help = 2^(-j/2)*wddata(dyad(i)); %L1 normalization

for k=1:length(q)

s(j,k)=mean(abs(help).^q(k)); %

end;

end;

t=[];

for k=1:length(q)

a=polyfit(j1:j2,log2(s(j1:j2,k))’,1); %regression

t=[t,a(1)];

end;

alfa=diff(t)./diff(q); % numerical derivative

qq=q(1:length(q)-1);

f=qq.*alfa-t(1:length(q)-1);
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From the practical point of view, we still require a robust estimator of the

partition function.

E|dj,k|q ∼ 2jT (q), as j → −∞

It has been shown that the qth moment of the wavelet coefficients of the

power law process (Arneodo, 1998) satisfies the following equation:

E|dj,k|q = Cq2jqH

where H is the self-similarity exponent and Cq is a constant depending only on

q.

It is a standard practice to use linear regression to identify the self-similarity

exponent H since the values E|dj,k|q could be easily obtained by

moment-matching method thereby facilitating the estimation of T (q).

log2 Ŝj(q) ∼ jT (q) + εj ,

where Ŝj(q) = 1
N2−j

∑N2−j

k=1 |dj,k|q is the empirical qth moment of the wavelet

coefficients (N is the length of the entire time series) and the error term εj is

introduced from the moment matching method when replacing the true

moments with the empirical ones. Simple ordinary least square (OLS) is the

most convenient choice of estimating the partition function.
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The bias can be very large in some extreme cases since the variance of the

empirical qth moments is not constant with respect to scale j. The variance of

log2 Ŝj(q) is

V ar(log2 Ŝj(q)) =
A(q)

N2−j
+

B(q)

N24−j
+ · · ·

where A(q) and B(q) are constants depending only on the underlying

distribution function of the finest wavelet coefficient.

The regression problem is a heteroskedastic problem in which the variances

of the error terms are not constant across the scales. Even though the OLS

solution of T (q) is still unbiased and consistent asymptotically, it is no longer

efficient due to the heteroskedasticity.

Weighted least squares (WLS) is used to obtain efficient unbiased estimates.

WLS estimator downweights the squared residuals for scales with large

variances, in proportion to those variances. If one finds

wj = V ar−1(log2 Ŝj(q)), a WLS estimator of T (q) is given by

T̂ (q) =

∑J
j=1 wj

∑J
j=1 jwj log2 Ŝj(q)−

∑J
j=1 jwj

∑J
j=1 wj log2 Ŝj(q)∑J

j=1 wj
∑J

j=1 j2wj − (
∑J

j=1 jwj)2

In practice, the exact analytical formula V ar(log2 Ŝj(q)) is too complicated



9

to be used directly. However, if the N is reasonably large it is natural to use

the approximate weights pj = N2−j .

This WLS estimator results in a variance given by,

V ar(T̂ (q)) =
A(q)C(J)

N
+

B(q)D(J)

N2

where the constants C(J) and D(J) can be evaluated from the formula

provided in [?].

Once the T (q) is estimated, the next step is to perform the Legendre

transform. Since
∂(αq−T (q))

∂q
= α− T ′(q) and T ′′(q) < 0 (Goncalves, 1998), the

maximum value of αq − T (q) is achieved at q = T ′(−1)(α). So, performing the

Legendre transform is divided into two steps: First, the numerical derivative of

T (q) is obtained using the finite difference; then, the value of Legendre

spectrum at α = T̂ ′(q) is evaluated. We point out that the Legendre transform

is not able to estimate the multifractal spectrum value at arbitrary singularity

strength α. The set of the multifractal spectrum values is determined by a

pre-specified vector of q values. The more q values used, the finer the

multifractal spectrum will appear, i.e., the resolution of the spectrum is

determined by the “(order) sampling frequency” of the moments.
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Geometric Attributes of the Multifractal Spectrum

Theoretically, the multifractal spectrum of a fractional Brownian Motion or

fBm process (representative of mono-fractals) consists of three geometric parts:

the vertical line, the maximum point and the right slope.

The maximum point corresponds to the Hurst exponent and the vertical line

and the right slope are thought to be inherent features, which distinguish fBm

from a multifractal process. However, it is impossible spectrum in practice.

Even for a well simulated fBm, due to finite sample size and estimation error

(the partition function estimation and derivative approximation are responsible

for most of the errors), its spectrum may deviate from the theoretical form

Comparing with the turbulence measurement, the fBm is much closer to the

vertical line and this closeness may be quantified by the left slope of the

spectra. Another important difference between these two spectra is the width

spread of the spectra. It is obvious that the width spread of the fBm is much

smaller than that of the turbulence measurement indicating lack of richness in

singularity indices for the fBm.
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The spectrum can be approximately summarized by the “left” slope, the

maximum point, and the width spread.

The left and right slopes can be obtained using linear regression.

Definition: Suppose that α1 and α2 are two roots that satisfy the equation
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f(α) + d = 0 and α1 < α2. The broadness of multifractal spectrum is defined

as B = α2 − α1, where f(α) is the spectrum function in terms of Holder

regularity indices α’s. d is usually taken as 0.2.
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