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THEORY AND APPLICATIONS

Lecture 6: BAMS in ACTION
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P L A N

1. Global vs. Local

2. BAMS in Action
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Global/Local scaling exponent in turbulence
measurements
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Coding vs. Noncoding DNA Sequences

The DNA sequences can be recoded with respect to purines (A, G)
v.s. pyrimidine (C, T) as the binary sequences ω in the alphabet
{−1, 1}, where -1 corresponds to A, G and 1 coresponds to C, T.
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Internet Traffic Data

Interarrival package times, Duke OIT

Global power spectra: bifractal? Marginal? Model?
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A CASE STUDY: BAMS AGAIN

Of interest: separation of the instrumentation noise from high
frequency ozone concentration measurements sampled in the
atmospheric boundary layer.

The proposed Bayesian model relies on BAMS (Bayesian
Adaptive Multiresolution Shrinker)

Gas analyzers used in high frequency sampling of ozone concentration tend

to convolve the signal with a noise assumed either white or autoregressive.

The separation between signal and noise is achieved by inverting wavelet

coefficients, splitting in a fashion dictated by the statistical model which

incorporates a K41 type-power law.
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Time series of simultaneously measured turbulent velocity components, air

temperature, and ozone concentration. For comparison purposes, we

normalized all the time series measurements to zero-mean and unit variance.
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BAYESIAN MODEL

Suppose the observed data y (e. g., ozone concentrations)
represent the sum of an unknown signal s and random noise ε.
Coordinate-wise,

yi = si + ε′i, i = 1, . . . , n.

In the wavelet domain (after applying a nondecimated wavelet
transformation W to the observed data), regression from the
“time” domain becomes djk = θjk + εjk, where djk, θjk, and εjk are
the j, k-th coordinates in the traditional nondecimated scale/shift
wavelet-enumeration of vectors Wy,W s and Wε′, respectively. Our
assumption is that the coefficients djk can be considered
independent, at least for high resolution levels.
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We assume, as commonly done, that each coefficient d in the
wavelet domain is affected by normal errors, and thus the
conditional distribution of d given θ and σ2, [d|θ, σ2], is N (θ, σ2).
In BAMS, the prior distributions on σ2 and θ are chosen to be,
respectively, an exponential one, E(µ), and a mixture of a point
mass at zero and a double exponential distribution, DE(0, τ).

The Bayes rule is:

δ∗(d) =
(1− ε) m(d) δ(d)

(1− ε) m(d) + ε DE
(
0, 1√

2µ

) . (1)

where

m(d) =
τe−|d|/τ − 1√

2µ
e−
√

2µ|d|

2τ2 − 1/µ
.
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Bayes rule δ(d) for ε = 0.9, τ = 2, and µ = 1/2.
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Vidakovic and Ruggeri (2001) proposed an empirical moment
matching specification of parameters which worked well if the
signal is smooth. Here, the parameter specification will reflect the
fact that signals are self-similar with theoretically established Hurst
exponent H = 1/3.

1. µ is the reciprocal of the mean for the prior on σ2, or, equivalently, the

square root of the precision for σ2. We first estimate σ by a robust Tukey’s

pseudos = (Q3 −Q1)/C, where Q1 and Q3 are the first and the third quartile

of the finest level of details in the decomposition and 1.3 ≤ C ≤ 1.5. We

propose 1
pseudos as a default value for µ; according to the Law of Large

Numbers, this ratio should be close to the “true” µ.

2. ε is the weight of the point mass at zero in the prior on θ and should depend

on level j. If the signal is smooth ε should be close to 1 at the finest level of

detail and near 0 at coarse levels. In our case the signal is not smooth and a

decay in ε is unreasonable. Hence, we fixed ε = 0.5 in all levels. With a

constant ε, control of prior variance decay becomes easier though we emphasize

that the value of ε = 0.5 is not unique.
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3. The parameter τ is the scale of the “spread part” in the prior. In the case of

a double exponential prior, the variance of the signal part is 2τ2. Because of

assumed independence between the error and the signal parts, we have

σ2
d = 2(1− ε)2τ2 + 1/µ, where σ2

d is the variance of an observation d. According

to K41 exact power laws, the average energies of the signal in the wavelet

domain decay in a log-linear fashion when increasing the resolution of the levels

(or the level index). This provides a calibration method for eliciting prior

variances on the signal coefficients: they decay proportionally to 2(−5/3).

Unlike the thresholding rules that set small wavelet coefficients to 0, the rule

(1) splits the coefficients as d = δ∗(d) + (d− δ∗(d)) = θ̂ + ε̂. The θ̂-part

corresponds to turbulence signal and exhibits energy spectra decaying with a

slope of -5/3 (H = 1/3) due to pre-described scaling. On the other hand, the

noise part coefficients, ε̂, exhibit “flat” spectra, as expected.
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Filtering Ozone Data (A Cartoon)
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Interactions between the filtered O3 time series and turbulent
velocity (u′, w′) are more consistent with theoretical predictions
from turbulence theories (e.g. K41) than the unfiltered ozone time
series.

Although marginally normal, the residuals ek are not exactly
“white.” We found that in separated noise there are significant 2-
to 3-lag autocorrelations. In the run we explored the empirical
model for the noise is found to be

ek − 0.2971 ∗ ek−1 − 0.2056 ∗ ek−2 − 0.1605 ∗ ek−3 = Zn,

where Zn is a white noise time series.

This finding is in agreement with the physical properties of the
chemiluminescent gas analyzer, in which some residual reactants
from previous sampling times influence the present ozone
concentration measurement.


