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Detection and Assessment of Scaling

By observing the data at time domain it is impossible to detect scaling

without resorting to such tools such as, for example, Structure Functions,

Spectrograms, Logscale Diagrams, Structure Functions, q-th order Logscale

Diagrams, etc.

If, for example, in Fourier Log-Spectrograms or Logscale Diagrams it

is possible to align a straight line with particular slope of −α, over duration of

several decades (octaves, “binary-decades”) then the scaling in the data is

present.

The key tool is of course the linear regression analysis for which the

goodness of fit is assessed by standard regression measure, such as R2.

Plethora of tests are available here including nonparametric goodness of fit

tests (χ2, Kolmogorov-Smirnov), bootstrap, empirical MSE, etc.
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It is possible also to automatically select the range of scales [j1, j2] for

which the goodness of fit measure is minimized. The selection of this range is

important since in many situations estimation of the slope is non-robust to

change in j1 and/or j2. This robustness is influenced by several factors,

including quality of data, a slope close to zero, presence of a periodicity, or

injection of energy at a particular scale.

Especially critical is the selection of low scale j1. The high variability

of spectra at low scales is influenced by several factors – some of which have

nothing to do with the nature of data. For example, in the Logscale diagrams

points at low scales are obtained by averaging substantially less empirical

values of energy (squared wavelet coefficients). The difference in the number of

averaged values is huge, for example if the scale j2 = 10 averages 1024 energies,

the scale j1 = 3 averages only 8 values.

By the assessment of scaling we consider two tasks: identification of

the phenomenon (model selection) and evaluation of the scaling slope.

As in any model selection task, it is important to have some prior

information about the data – because that may be decisive in the model

selection and subsequent inference.
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If the observed scaling α is in (0, 1) [slope of −α], and we believe (or

confirm) that data are stationary – then the estimated slope α corresponds to

the LRD parameter α and the link with Hurst exponent is H = 1−α
2

.

For example, in Gait Data, the stride intervals for a normal person are

scaling down with the slope of −0.74. from which we find H = 0.87.

Stationarity is a reasonable assumption and selected model is LRD. Additional

examples are Nile River data and Internet traces data.

If, on the other hand, the estimated slopes are greater than one, and

the data may have been obtained as cumulative process and/or are not

stationary (stock market prices, turbulence measurements, seizure data) then

they correspond to an stationary increments or even stationary k-th

increments, k > 1.

In this cases H = α−1
2

and in case of a monofractal, H coincides with

the regularity (in Hölder sense) of the non-differentiable sample paths. For

instance, the turbulence signals give slope of −5/3, defining H = 1/3.
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Estimation of the Scaling Law

We discuss some methods for estimating the scaling exponent α or

equivalently corresponding Hurst exponent, H.

The methods fall into two general categories: time domain and

scale/frequency domain methods. We already hinted and even discussed some

of those, such as R/S and Logscale methods. More comprehensive discussion is

provided in this chapter.

R/S Theory

The rescaled range was analyzed by E. Hurst in 1951. Let X1, . . . , Xn be a

sequence of random variables with partial sums Qt =
∑t

j=1 Xj , t = 1, . . . , n,

and Q0 = 0. Let Qt,n = Qt − t
n

Qn, t = 0, 1, . . . , n be the adjusted partial

sums. The adjusted range is defined as

Rn = max
0≤t≤n

Qt,n − min
0≤t≤n

Qt,n.

Let Sn = 1/n
∑n

j=1(Xj − X̄)2, where X̄ = 1/n
∑n

j=1 Xj .
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Theorem: (Beran monograph) (i) If Xt is a process such that

t−1/2
∑[tr]

s=1 Xs, r ∈ (0,∞), converges weakly to Brownian motion process

B(t), as t →∞ and if X2
t is an ergodic process, then

1√
n

Rn/Sn
d→ ξ,

where ξ is a nondegenerate random variable.

(ii) If Xt is a process such that t−H
∑[tr]

s=1 Xs, r ∈ (0,∞), converges weakly to

a fractional Brownian motion process BH(t), as t →∞, and if X2
t is an ergodic

process, then

n−HRn/Sn
d→ η,

where η is a nondegenerate random variable.

The assumption in (i) holds for most common short memory random

processes. That means that the points (log n, log Rn/Sn) would scatter around

the line with the slope H = 1/2. In the second case, the points would scatter

around the line with the slope H > 1/2.
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Variance Plots

Second order properties of an H-ss process can be explored by variance

plots. For example, for a fBm process {BH(t), t ≥ 0}, i.e., for

Y (n) = BH(n + 1)−BH(n),

V ar(BH(t + h)−BH(t)) = |h2HV ar(BH(u + 1)−BH(u)) = |h|2Hσ2
Y i.e., for

any fixed k, V ar
[∑k+m

k+1 YH(n)
]

= m2Hσ2
X .

The aggregated process

X
(m)
H (n) =

1

m

nm∑

i=(n−1)m+1

YH(i),

would have variance 1/m2 ·m2Hσ2
X = m2H−2σ2

X .

Thus, the Log-Log plot of sample variance s2(Y
(m)
H ) [For a vector

y = (y1, . . . , yn) of length n, s2(y) = 1/(n− 1)
∑n

i=1(yi − ȳ)2.] should have a

slope of 2H − 2.
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Allan Variance

Allan variance is mainly used in inference involving 1/f -type

processes, especially in statistical signal processing. This measure of variability

converges for a wide range of noise processes, it has straightforward

relationship to power law spectral density, and it is easy to compute.

For observations X1, . . . , Xn the Allan variance is given by

σ2
a =

1

2(n− 1)

n−1∑

i=1

(Xi+1 −Xi)
2.

The division by 2 calibrates this variance to coincide with the standard

variance estimator s2 when observations are coming from a white noise process.

The advantage of the Allan variance over the standard variance

estimator is that it converges for most of the commonly encountered kinds of

noise, whereas the classical variance does not always converge to a finite value.

For example, for the “flicker” noise the standard variance estimator s2 does not

converge.
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Related measure is the Hadamard Variance,

σ2
h =

1

6(n− 2)

n−2∑

i=1

(Xi+2 − 2 ·Xi−1 + Xi)
2,

also known as three-point variance. It uses squares of second differences in data.

Main use of Allan variance is conventional: to provide a measure of

variation in data. In the frequency analysis of time series, measured frequency

may be sampled at some rate. The resulting Allan deviation over the sample

values represent a general measure of frequency stability at the given sampling

rate.

The more interesting role of Allan variance is in the discrimination of

a residual noise. In frequency measurement work, five different types of noise

are encountered: white noise phase modulation, flicker noise phase modulation,

white noise frequency modulation, flicker noise frequency modulation, and

random walk frequency modulation. A log-log plot of Allan variance versus

sampling period produces approximate straight lines with different slopes in

four of the five possible cases.
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An application of Allan variance in a testing problem. Let X1, . . . , Xn

be a random sample. It is often of interest to test the hypothesis of constant

mean, i.e., H0 : EXi = C, i = 1, . . . n.

The alternative H1 could be general, but is often specified, for

instance, H1 : EXi = EXi−1 + h, i = 2, . . . , n, a systematic shift in the data is

present.

When the sample comes from the normal distribution and H0 is true, the test

statistics

R =
σ2

a

s2

has moments ER = 1, V ar(R) = 1
n+2

+ o(n−3) and Z = (R− 1)
√

n2−1
n−2

has

approximately standard normal distribution. When n > 60, an α-level

approximate rejection region for H0 is {R < R∗α}, where

R∗α = 1 + zα/

√
n +

1+z2
α

2
.

Both Allan and Hadamard Variances are special cases of so called

generalized variations which use differencing filters. When viewed from the

prospective of wavelets, Allan variance is Haar wavelet variance.
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Zero-Crossing Method

The zero-crossing method is based on counting the number of zero crossings

ZN , producing an estimate of the Hurst exponent as:

Ĥ =
1

2
{1 + log2(1± | cos(πSN )|)}

where SN = ZN/(N − 1) is an average number of zero-crossings for the

differenced time series of length N , and sign + (alternatively –) in ± is taken if

the true exponent H is above (below) 1/2.

Usually, it is not hard to judge whether the true exponent H is above 1/2 by

the observing the time series plot if this value is not sufficiently close to zero. It

was also demonstrated that the Ĥ is asymptotically Gaussian for the fractional

Brownian motion (fBm) models if the length of the time series is large enough

and the true Hurst exponent does not exceed 3/4.
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The estimation of Ĥ via zero-crossings is valid only for time series with

stationary increments. For signals lacking stationary increments, such as the

case for several turbulence time series measurements, we call Ĥ the quasi-Hurst

exponent.

One of the attributes differentiating turbulence signals from fBm is the

distinction in Ĥ. Theoretically, the quasi-Hurst and Hurst exponents coincide

for fBm, since fBm has stationary increments.

We empirically demonstrate this convergence using 1000 fBm paths. The

resulting Ĥ is 0.3331 with standard deviation of 0.06. On the other hand, the

quasi-Hurst exponent for turbulence signals is quite variable and significantly

exceeds 1/3, which may be utilized to diagnose how atmospheric stability alters

the global scaling parameter. That is, by analyzing deviations of Ĥ from 1/3

for turbulence measured under different stability conditions, a logical basis for

tracking how atmospheric stability conditions impact global scaling of inertial

subrange turbulence can be developed.
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%

function [Hhat, sn] = ZeroCross(seq, sign)

% ============================================================

% function [Hhat, sn] = ZeroCross(seq)

%

% seq -- sequence to be estimated for selfsimilarity

% sign -- (-1) if expected H < 0.5; (1) if expected H > 0.5

% Hhat -- estimator of Hurst exponent.

% sn -- propostion of zerocrossings among neighboring pairs

% ============================================================

finest = diff(seq,1);

nfin = length(finest);

sn = 0;

for i = 1: nfin-1

sn = sn + (finest(i) * finest(i+1) < 0);

end

sn = sn/(nfin-1);

Hhat = 1/2 * (1 + log2( 1 + sign * abs( cos( pi * sn )) ) );

%
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OTHER METHODS TO ESTIMATE H

Quadratic Variations

Log-Periodogram

Lobato’s Spectral CDF Method

Wavelet Based Methods log2spectra.m

Whittle Method

Convex Rearrangements


