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General Results

We assume that all random processes discussed are real valued and

defined on the same parameter space.

Two processes X(t) and Y (t) , equal in all finite dimensional

distributions, will be denoted as X(t)
d
= Y (t). This means that for any selection

of “times” 0 ≤ t1 < t2 < . . . tk < ∞ random vectors (X(ω, t1), . . . , X(ω, tk))

and (Y (ω, t1), . . . , Y (ω, tk)) have the same distribution. Informally, processes

equal-in-distribution are statistically indistinguishable.

Random process X(t) is called stochastically continuous at t0 if

limh→0 P (|X(t0 + h)−X(t0)| > ε) = 0, for any fixed ε > 0.

Also, we consider processes not to be trivial. Process X(t) is trivial if

the distribution of random variable X(ω, t), t fixed is a point mass measure.
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A random process X(t), t > 0 is called self-similar if for any a > 0,

there exists b > 0 such that

X(at)
d
= bX(t).

(Lamperti, 1962) If random process X(t), t ≥ 0 is nontrivial,

stochastically continuous at 0, and self-similar, then there exists unique H ≥ 0

such that b = aH . If X(0) = 0, a.s. then H > 0.

Standard definition of self-similar processes is as follows: Process

X(t), t ≥ 0 is self-similar, with self-similarity index H (H-ss) if and only if

there exists H > 0 such that for any a > 0, X(at)
d
= aHX(t).

Uniqueness of H is not obvious from this definition, although, H is

unique by the Lamperti’s theorem. Also, from Definition it follows X(0) = 0.

Example: Standard Brownian Motion B(t) is 1/2-ss. Indeed, the

process W (t) = 1/
√

aB(at) is standard Brownian motion, as well.
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Stationarity and LRD

Let {X(t), t ∈ R} be a random process such that the autocovariance

function

γX(r, s) = COV(X(r), X(s)) = E(X(r)− EX(r))(X(s)− EX(s))

is finite for any pair r, s ∈ R The random process (time series) {X(t), t ∈ R} is

said to be (weakly, second-order, or wide-sense) stationary if

(i) E|X(t)|2 < ∞,

(ii) EX(t) = m, for all t ∈ R, and

(iii) γX(r, s) = γX(r + t, s + t) for all r, s, and t ∈ R.

or

(iii)’ COV(Xt+h, Xt) = γX(h).

If the index space for parameter t is not R but the set of integers, Z
random process X(t) is called random sequence or time series and often

indexed as Xt, t ∈ Z.
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Examples:

(i) White noise is a stationary sequence Zt such that EZt = 0 and

γ(h) = σ2 · δh; in notation, Zt ∼ WN (0, σ2).

(ii) The moving average MA(q) process, defined as

Xt = Zt + θ1Zt−1 + θ2Zt−2 + · · ·+ θqZt−q , Zt ∼ WN (0, σ2),

has autocovariance function

γ(h) =





σ2
∑q−|h|

j=0 θjθj+|h|, |h| ≤ q

0 |h| > q.

(iii) The autoregressive AR(1) process, Xt − φXt−1 = Zt, Zt ∼ WN (0, σ2),

has autocovariance function

γ(h) = σ2 φ|h|

1− φ2
.
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Fourier transformation of autocorrelation (or autocovariance)

function leads to spectral density f(ω)

f(ω) =

∫

R
γ(h)e−ihωdh,

which is non-negative by Wiener-Khinchine theorem. Properly normalized

indeed represents a density in a probabilistic sense. Depending on the

definition of Fourier transformation, in our case f should be divided by 2πγ(0).

The function f(ω) is also called power-spectrum since

E|X(t)|2 = 1/(2π)
∫

R f(ω)dω, and E|X(t)|2 represents the “power” of

zero-mean signal X(t).
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It is possible define a counterpart of a spectral density of a

nonstationary process (pseudo-spectrum) if linear filtering produces a

stationary process. An example is spectrum for the fractional Brownian motion

(later).

A stationary process Y (t) is called long-range dependent (LRD)

process if its autocorrelation function or spectral density behave as

γY (h) ∼ Cγ |h|α−1, h →∞, α ∈ (0, 1),

or

fY (ω) ∼ Cf |ω|−α, ω → 0, α ∈ (0, 1),

where Cγ and Cf are two related constants. These two relations are equivalent

subject to mild assumptions.
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SS + LRD

Let X(t), t ∈ R be H − ss process. If its increments are stationary,

i.e, if the distribution of X(t + h)−X(t) is independent of t, it will be called

H − sssi process.

The following theorem gives the form of autocorrelation function of any

H − sssi process with finite second moment.

Let X(t), t ∈ R be an H − sssi process for which E|X(1)|2 < ∞. Then,

γ(t, s) = EX(t)X(s) =
E|X(1)|2

2

[
|t|2H + |s|2H − |t− s|2H

]
.
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Proof: From H-ss and stationarity of increments property,

EX(t)X(s) =
1

2

[
E(X(t)2) + E(X(s)2)− E[X(t)−X(s)]2

]

=
1

2

[
t2HE(X(1)2) + s2HE(X(1)2)− E[X(|t− s|)−X(0)]2

]

=
E|X(1)|2

2

[
t2H + s2H − |t− s|2H

]
.

Increments of SSSI processes

Let X(t) be an H-sssi process with 0 < H < 1 and E|X(1)|2 < ∞. Define

stationary sequence of random variables Y (n) as

Y (n) = X(n + 1)−X(n).

If γY (n) is the autocorrelation function for Y (n), i.e., γY (n) = EY (n)Y (0),

then if H = 1/2, γY (n) = 0, for n ≥ 1 and if H 6= 1/2, it is possible to find an

explicit expression for γ(n). Using the fact that X(0) = 0 we find,
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γY (n) = EY (1)Y (n) = EX(1)(X(n + 1)−X(n))

= E(X(1)X(n + 1)− E(X(1)X(n))

=
E|X(1)|2

2

[
(n + 1)2H − n2H + (n− 1)2H

]
.

If the expressions (n± 1)2H are replaced by their polynomial expansions

n2H ± 2Hn2H−1 + H(2H − 1)n2H−2 + . . . , the following asymptotic result

holds

lim
n→∞

γY (n)

H(2H − 1)E|X(1)|2 n2H−2
= 1. (1)

In other words, γY (n) = O(n2H−2).

Note that series
∑

n |γY (n)| converges if 2− 2H > 1 or, equivalently, if

0 < H < 1/2. For such H, expression 2H − 1 in (1) is negative, and correlations

γY (n) are negative. If 1/2 < H < 1 correlations γ(n) are positive, but∑
n |γY (n)| = ∞, since 2− 2H < 1.
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Aggregation

Long range dependent process Y (n) is asymptotically second-order

self-similar, i.e., the second order moments of Y and aggregated time series

Y (m) coincide.

The aggregate series Y (m)(k) is defined as series of averages of

non-overlapping blocks of size m from the sequence Y (n),

Y (m)(k) =
Y (km−m + 1) + · · ·+ Y (km)

m
,

V arY (m) ∼ 1/m γY (0) +

m−1∑

k=1

k2H−2(m− k) ∼ m2H−2.

Informally, Y (m)(k) and Y (n) look similar at all scales. This asymptotic

behavior of the variance of aggregated process, V arY (m) ∼ m2H−2, can be

used for inference about H.
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Self-Similar Processes as Fixed Points of Renormalization
Groups

For a sequence of random variables Y0, Y1, . . . , Yn, . . . , H > 0, and N ≥ 1

define the transformation

TN,H : Y 7−→ TN,HY =
{
(TN,HY )j , j = 0, 1, 2, . . .

}
,

where

(TN,HY )j =
1

N

(j+1)N−1∑

k=jN

Yk, j = 0, 1, 2, . . .

It is easy to verify that

TM,H ◦ TN,H = TMN,H ,

and the sequence of transformations {TN,H , N = 1, 2, . . . } forms a

multiplicative semigroup, called renormalization group of index H.
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A stationary sequence Y = {Y0, Y1, Y2, . . . } is H-ss, if Y is a fixed point of a

renormalization group {TN,H , N = 1, 2, . . . }, i.e., for any N ≥ 1 and any finite

set of indices J ,

{
(TN,HY )j , j ∈ J

} d
= {Yj , j ∈ J} .

Theorem: Let {X(t), t ≥ 0} be H-sssi process with H > 0. Then the

increment process Yj = X(j + 1)−X(j), j = 0, 1, 2, . . . is a fixed point of the

renormalization group {TN,H , N = 1, 2, . . . }.
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Proof. Since {X(t), t ≥ 0} is H-ss for H > 0, by Lamperti’s Theorem,

X(0) = 0. Fix any k > 0, and real numbers a1, . . . , ak. Fix N ≥ 1. Then,

k∑

i=0

ai(TN,HY )i =
k∑

i=0

ai
1

NH

(i+1)N−1∑

j=iN

Yj

=
k∑

i=0

ai
1

NH
(X((i + 1)N)−X(iN))

d
=

k∑

i=0

ai(X(i + 1)−X(i))

=
k∑

i=0

aiYi.

Time domain exponent n2H−2 corresponds to frequency domain exponent

ω1−2H . Thus frequency scaling is,

α = 2H − 1,



16

Fractional Brownian Motion (fBm) and Fractional
Gaussian Noise (fGn)

Fractional Brownian motion (fBm)is a generalization of standard Brownian

motion (Wienner Process). The Brownian motion B(t) is standardly defined as

a random process satisfying the following four requirements:

(i) B(0) = 0,

(ii) For any choice n and 0 ≤ t1 < t2 < · · · < tn, the increments

B(t2)−B(t1), . . . , B(tn)−B(tn−1) are independent and stationary;

(iii) For fixed t, B(t) is the Gaussian random variable with zero mean and

variance t, and

(iv) B(t) is a continuous function of t, a.s.
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It is straightforward to check that the Brownian motion is an 1/2-sssi

process, for W (t) = a−1/2B(at) conforms to properties (i)-(iv).

The Brownian motion is a Gaussian process and Gaussian processes are fully

determined by their second order properties. Thus, the Brownian motion is

unique Gaussian process having covariance function

γ(t, s) = EB(t)B(s) = 1/2(t + s− |t− s|) = min{t, s}.
If H-sssi process is Gaussian, it is unique and it is called fractional

Brownian motion.

Def. A zero mean Gaussian process BH(t) is called fractional Brownian

motion with Hurst exponent H, if

EX(t)X(s) =
E|X(1)|2

2

[
|t|2H + |s|2H − |t− s|2H

]
,

where E|X(1)|2 =
Γ(2−2H) cos(πH)

πH(1−2H)
.

The process BH(t) is unique, in the sense that class of all fractional

Brownian motions with exponent H coincides with the class of all Gaussian

H − ss processes. However, a Gaussian process is H − ss with independent

increments, if and only if it H = 1/2, i.e., if it is a Brownian motion.
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Alternative Definition (1)

(i) BH(t) has stationary increments,

(ii) BH(0) = 0 and EBH(t) = 0∀t
(iii) EBH(t)2 = |t|2H ,∀t
(iv) BH(t) is a Gaussian process

(v) BH(t) has continuous paths.

The difference process, Yn = BH(n + 1)−BH(n) is called fractional

Gaussian noise (fGn). The covariance function of fGn is

γ(h) =
E|X(1)|2

2

[
(h + 1)2H − 2h2H + (h− 1)2H

]
,

which is, as we discussed, in agreement with general H-sssi processes.

Since BH(t) is the unique Gaussian H-sssi process, it follows from

Renormalization Theorem that in the class of Gaussian stationary sequences,

the fractional Gaussian noise is unique fixed point of the renormalization group

{TN,H , N = 1, 2, . . . }.
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Alternative Definition (2): Mandelbrot and Van Ness (1968)

BH(0) = 0, and

BH(t) = C ·
[∫ t

−∞
(t− s)H−1/2B(ds)−

∫ t

0
(−s)H−1/2B(ds)

]

=

∫
K(t, s) B(ds), where C = Γ(H + 1/2)/(Γ(2H + 1) sin(πH))1/2.

BH(t) is selfsimilar with self-similarity index H

BH(ct) =

∫
K(ct, s) B(ds) = cH−1/2

∫
K(t, s/c) B(ds)

= cH−1/2

∫
K(t, v) B(dv) = cH−1/2c1/2

∫
K(t, v) B(dv) = cHBH(t).

Similarly to integral representation of Mandelbrot and Van Ness, fBm allows

the so called harmonizable representation,

BH(t) =

∫

R

eitω − 1

|ω|H+1/2
B(dω),

where B(dω) is the Wiener measure.
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Sample paths of fractional Brownian motion are behaving similarly to those

of standard Brownian motion. They are continuous almost surely for all

H ∈ (0, 1) and nowhere differentiable. The fractal (Hausdorff) dimension of

sample paths is D = 2−H. That means that for small H (say, H < 0.5) the

sample paths are quite irregular and space-filling.
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Simulated paths of fractional Brownian motion, (a) H = 1/4, (b) H = 1/2,

and (c) H = 3/4.

It is interesting that sample paths of fractional Brownian motions are

continuous in H, a result of Peltier and Lévy-Véhel (2000).
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Convex Rearrangements of Davidov

Let ∆(i) = BH( i+1
n

)−BH( i
n

), for i = 1, . . . , n− 1. Let ∆1:n ≤ . . . ∆n:n be

the corresponding order statistics. Define the polynomial

V BH,n(t) =
∑[nt]−1

i=0 ∆i:n + (nt− [nt])∆[nt]:n.

[Th] Phillpe and Thilly (2000) showed that

V BH,n(t)

n1−H
√

C
→ L(t),

where L(t) = − 1√
2π

exp− 1
2
Φ−1(t), and Φ is the standard Gaussian cdf.

This result can be utilized to estimate H.



22

Autoregressive, Fractionally Integrated, Moving Average
Processes (ARFIMA)

ARFIMA(p, d, q) introduced by Granger and Joyeux (1980) and Hosking

(1981).

It can be used for statistical modeling of time series with long memory.

ARMA models (when d = 0) or ARIMA (when d is a positive integer) are

special cases.

In the terns of standard time back-lag operator B defined as

BkY (n) = Y (n− k), k = 0, 1, . . . , the ARFIMA(p, d, q) model can be

represented as:

Φp(B)(1−B)dY (n) = Θq(B)ε(n), n = 1, 2, . . .

where Φp(z) = 1− φ1z − · · · − φpzp is the autoregressive polynomial and

Θq(z) = 1 + θ1z + · · ·+ θqzq is the moving average polynomial; p and q are

integers, and d is a real number from (-1/2, 1/2). The innovations ε(n) are

assumed i.i.d. normal with zero mean and variance σ2.
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The ARFIMA(p, d, q) model can be interpreted as an ARMA(p, q) process

Φ(B)Y (n) = Θ(B)Z(n), n = 1, 2, . . .

where the noise process Z(n) is a fractionally differenced Gaussian noise,

(1−B)dZ(n) = ε(n), ε(n) ∼ N(0, σ2).

We will focus on ARFIMA(0, d, 0) since, for example, ARFIMA(p, d, q) model

can be generated by appropriate filtering of ARFIMA(0, d, 0). For example, in

matlab, to obtain an ARFIMA(p, d, q) simulation from an ARFIMA(0, d, 0)

run, one applies filter function,

arfimapdq = filter( b, a, arfima0d0 ), where a

= [1 − φ1 − φ2 . . . − φp] and b = [1 θ1 θ2 . . . θq ].
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The fractional difference operator can be expresses by the following binomial

expansion:

(1−B)d =
∞∑

k=0

(d

k

)
(−B)k

= 1− dB − 1

2
d(1− d)B2 − 1

6
d(1− d)(2− d)B3 − · · ·+

(−1)k Γ(d + 1)

Γ(k + 1)Γ(d− k + 1)
Bk + . . .

It holds (−1)k Γ(d+1)
Γ(k+1)Γ(d−k+1)

=
∏

0<j≤k
k−1−d

k
= ck, so ARFIMA(0, d, 0)

is an AR(∞) process. In particular, ARFIMA(0, d, 0) is close to fractional

Gaussian noise with parameter H = d + 1/2.

For d > 1/2 the ARFIMA process is not stationary, although it can be

differenced to a stationary process. For −0.5 < d < 0 the process is called

intermediate memory or overdifferenced, see Brockwell and Davis (1993). The

ARFIMA model is stationary with long memory when when 0 < d < 1/2,

which is the most interesting case.
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(a) ARFIMA(0,-0.3,0); (b) ARFIMA(0,0.3,0),; (c) ARFIMA(5,0.3,4) for

φ = [3/10 43/90 −19/90 −1/30 1/45]; θ = [−4/5 −11/45 16/45 −4/45].
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The process Z(n) can also be represented as an moving average process of

infinite order, since

Z(n) = (1−B)−dε(n), ε(n) ∼ N (0, σ2) (2)

can be written as

Z(n) =
∞∑

k=0

(d + k − 1

k

)
ε(n− k)

=
∞∑

k=0

Γ(k + d)

Γ(k + 1)Γ(d)
ε(n− k).

The covariance function of Z(t) is given as

γZ(h) = E(Z(n)Z(n + h)) =

= γ(0)
Γ(1− d)Γ(h + d)

Γ(d)Γ(h + 1− d)
(3)

= γ(0)
∏

0<k≤h

k − 1 + d

k − d
, h = 1, 2, . . .

where γ(0) = σ2
∑∞

k=0

(d+k−1
k

)2
= σ2
√

π·4d
Γ(1/2−d)
Γ(1−d)

.
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Autocorrelation function can be represented as

ρ(h) = γ(h)/γ(0) =
∏

0<k≤h

k − 1 + d

k − d
=

d(1 + d) . . . (h− 1 + d)

(1− d)(2− d) . . . (h− d)
, h = 1, 2, . . . .

Since
Γ(h+a)
Γ(h+b)

∼ ha−b, when h is large, ρ(h) ∼ Γ(1−d)
γ(d)

h2d−1. Obviously, when

0 < d < 0.5, the exponent −1 < 2d− 1 < 0 and the series
∑

h ρ(h) diverges

(“long memory”).

By filtering considerations, the spectral density of an ARFIMA(p, d, q)

process is

f(ω) =
σ2

2π
|1− e−iω |−2d |Θ(e−iω)|2

|Φ(e−iω)|2 .

Since |1− e−iω|2 = 4 sin2(ω/2) ∼ 4(ω
2
)2, as ω → 0, the spectral density of

ARFIMA(p, d, q) process behaves as

f(ω) ∼ σ2

2π
|ω|−2d |Θ(1)|2

|Φ(1)|2 ,

when ω is close to 0.

Expressions for autocovariance function for general ARFIMA(p, d, q) are

complicated.


