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P L A N

1. Fourier and Wolf’s Numbers

2. Hurst and Nile Data

3. Ubiquity of Scaling

4. Why Data Scale?
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{Xt, t ∈ Z} a real, weakly stationary time series with zero
mean and autocovariance function γ(h) = EX(t + h)X(t).

Spectral Density:

f(ω) =
1
2π

∞∑

h=−∞
γ(h)e−ihω

Given the spectral density, the autocovariance function
can uniquely be recovered via inverse Fourier transform,

γ(h) =
∫ π

−π
f(ω)eihωdω, h = 0,±1,±2, . . . .
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The periodogram I(ω), based on a sample
X0, . . . , XT−1 is defined as

I(ωj) =
1

2πT

∣∣∣∣∣
T−1∑

t=0

Xte
−itωj

∣∣∣∣∣

2

,

where ωj is the Fourier frequency
ωj = 2πj

T , j = [−T/2] + 1, . . . ,−1, 0, 1, . . . , [T/2].

function out = periodogram(ts)

out = abs(fftshift(fft(ts -

mean(ts)))).^2/(2*pi*length(ts));
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Wolf’s Sunspot Number Example

The Sun’s activity peaks every 11 years, creating
storms on the surface of our star that disrupt the Earth’s
magnetic field. These “solar hurricanes” can cause severe
problems for electricity transmission systems.

An example: 1989 power blackout in the American
northeast.

Long and rich history starting with Galileo.

Estimates of daily activity date back to 1818, monthly
averages can be extrapolated back to 1749, and estimates of
annual values can be similarly determined back to 1700.
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Observatory director Rudolph Wolf, who introduced
what he called the Universal Sunspot Number as an estimate
of the solar activity.

Data: The square root of Wolf’s yearly sunspot
numbers from 1733 till 1998.
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Processes may have:

(i) Long Range Dependence (slowly decaying
autocovariances)

(ii) Self-similarity, affinity, fractality, multifractality

(iii) Regular scaling
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Joseph Effect: Genesis 41 ... 17 Then Pharaoh said to Joseph, ”In my dream I was

standing on the bank of the Nile, 18 when out of the river there came up seven cows, fat

and sleek, and they grazed among the reeds. 19 After them, seven other cows came

up–scrawny and very ugly and lean. I had never seen such ugly cows in all the land of

Egypt. 20 The lean, ugly cows ate up the seven fat cows that came up first. 21 But even

after they ate them, no one could tell that they had done so; they looked just as ugly as

before. Then I woke up. 22 ”In my dreams I also saw seven heads of grain, full and good,

growing on a single stalk. 23 After them, seven other heads sprouted–withered and thin

and scorched by the east wind. 24 The thin heads of grain swallowed up the seven good

heads. I told this to the magicians, but none could explain it to me.” 25 Then Joseph said

to Pharaoh, ”The dreams of Pharaoh are one and the same. God has revealed to Pharaoh

what he is about to do. 26 The seven good cows are seven years, and the seven good heads

of grain are seven years; it is one and the same dream. 27 The seven lean, ugly cows that

came up afterward are seven years, and so are the seven worthless heads of grain scorched

by the east wind: They are seven years of famine.
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It Started with Hurst and Nile Data

British hydrologist Harold Edwin Hurst spent 62 years in Egypt working

on design and construction of reservoirs along the Nile River. By

inspecting historical data on the Nile River flows, Hurst discovered

phenomenon (now called Hurst effect).
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Problem: Optimal reservoir capacity R such that the reservoir

holds the river flow in N units of time, X1, X2, . . . XN , with a constant

withdrawal of X̄ per unit time.

The optimal volume of the reservoir was given by the so called

adjusted range,

R = max
1≤k≤N

(X1 + · · ·+ Xk − kX̄)− min
1≤k≤N

(X1 + · · ·+ Xk − kX̄)

Since the records for the waterflow rarely exceeded 100 years

Hurst inspected other geophysical data and in order to compare them, he

standardized their adjusted ranges R, with sample standard deviation

S =

√√√√ 1

N − 1

N∑
i=1

(Xi − X̄)2 ,

and obtained dimensionless ratio R/S - rescaled and adjusted range.
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On basis of more that 800 records, he found (Hurst, 1951) that

quantity R/S scales as NH , for ranging from 0.46 to 0.93, with mean

0.73 and standard deviation of 0.09.

This result was is contrast with the fact that for independent

normal random variables H is 1/2 in limit.

Feller proved that the limit is 1/2 for independent identically

distributed random variables with finite second moment.

It was believed that strong Markovian dependence was

responsible for this deviation until Barnard (1956) proved that limit

H = 1/2 holds for the Markovian case.

It was the work of Mandelbrot (1975), Mandelbrot and Van Ness

(1968), and Mandelbrot and Wallis (1968) who associated the Hurst (or

Joseph) phenomenon on the presence of long-memory.
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Figure shows gives n = 512 consecutive yearly measurements from the

famous Nile River Data set for the years 62-1281 A.D. Right panel shows

its log-spectra demonstrating the scaling law.
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Turbulence

The velocity and air temperature measured July 12-16, 1995, at

5.2 m above the ground at the Blackwood division of the Duke Forest in

Durham, North Carolina. During the experiment, maximum mean air

temperature up to 38◦C was measured in Durham. The sky condition

during these five days was clear with low to moderate winds. The site is

a 480 m by 305 m grass-covered forest clearing (36◦2′N 79◦8′W ,

elevation = 163 m)

The velocity components (U, V, W ) and air temperature T were

measured by a triaxial ultrasonic anemometer (Gill

Instruments/1012R2).

The sampling frequency (fs) and period (Tp) were 56 Hz and

19.5 minutes, respectively, resulting in N = 65, 536 measurements per

per run.
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Kolmogorov developed his theory, often referred to as K41

theory, for locally isotropic turbulence. Let x = (x1, x2, x3) be the

position vector and u = (u1(x), u2(x), u3(x)) be the velocity

components.

The probability distribution of the relative velocity differences

∆u(r) = u(x + r)− u(x),

is independent of time, and invariant under translations, reflections, and

rotations.

The fundamentals in K41 theory are structure functions

〈∆u(r)2〉.

Structure functions are closely related to correlations of

two-point velocity differences,

〈∆u(r)2〉 = 2σ2
u(1− ρu(r)).
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A (longitudinal) structure function of order p is defined as

Dp(r) = 〈||∆u(r)||p〉

where the angular brackets denote time averaging.

A functional description for the moments of velocity differences

can be derived using dimensional analysis and leads to

Dp(r) = Cp[〈ε〉 r]
p
3 ,

where Cp is a universal constant.

For the third-order structure function, it can be inferred directly

from the Navier-Stokes equations that C3 = − 4
5
.
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It follows that structure functions possess scaling behavior,

Dp(r) ∝ rζp .

The exponent ζp is called the scaling exponent. The K41 theory

gives the simple model ζp = p
3

.

Similarly, as for the structure functions, a description of the

energy of the turbulent fluctuations per unit of mass of fluid in scales r

can be derived from the hypotheses and by dimensional analysis,

Er ∝ (r)
2
3 .

Via the Fourier transform of Er, which results in the spectral

density φ(k), the celebrated “− 5
3

law” for the power spectrum is

obtained,

Ek = 2R−1k2φ(k) ∝ k−
5
3 .
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DNA Random Walks

In all eucariothic species, a DNA molecule consists of long

complementary double helix of purine nucleotides (denoted as A and G)

and pyrimidine nucleotides (denoted as C and T).

A single strain of this DNA can be represented as a long word

that corresponds to a random walk.

A, G −→ x(i) = +1

C, T−→ x(i) = −1

The random walk is defined as s(n) =
∑n

i=1 x(i), n ≥ 1 DNA

random walks have been first proposed by Peng et al. (1992).
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A 8196-long DNA random walk for spider, from EMLB

Nucleotide sequence alignment DNA database.

Bacry et al. (1995) explored self-similarity and fractality of DNA

walks for humans. They find that the Hurst exponent for non-coding

sequences (introns) is about 0.6 while for the coding ones (exons) the

exponent is close to 0.5.
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ESCA Spectrum

The ESCA spectrum ( J.P. Bibérian, of the Université de

Marseille – Luminy). This set is one of the Template data set in

WaveLab 802.

Electron Spectroscopy for Chemical Analysis (ESCA), also

referred to as X-ray Photoelectron Spectroscopy (XPS), irradiates the

sample surface with a soft (low energy) X-ray. This X-ray excites the

electrons of the sample atoms, and if their binding energy is lower than

the X-ray energy, they will be emitted from the parent atom as a

photoelectron.

Only the photoelectrons at the extreme outer surface (10-100

Angstroms (Å); 1 Å= 10−10m) can escape the sample surface, making

this methodology a surface analysis technique.
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An ESCA spectrum consists of a series of peaks corresponding

the the binding energies of the photoelectrons that produced these peaks.

ESCA analysis not only provides elemental information, but

because the technique is detecting the binding energy of emitted

electrons, it can also provide some chemical bonding information.

Figure shows the ESCA spectrum. Clear power law with the

slope of - 1.80 is notable.
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Stock Market Prices and Exchange Rates

Many economic time series, such as stock market prices,

exchange rates and asset returns exhibit scaling laws and long range

dependence.

This is in empirical contradiction to several economic theories

(random walk theory for stock market, perfect markets, etc) and gave

rise to several theories and models describing the scaling and LRD (such

as ARFIMA, fGn, fBm, GARCH, etc).

Coca Cola stock market prices and rates of exchange between

Hong Kong Dollar (HKD) and USDollar (USD).
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Coca Cola Stock Market Prices.
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Figure 1: (a) Coke Stock Market Prices; (b) scaling behavior
in the Fourier domain, and (c) in the wavelet domain.
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The rates of exchange between Hong Kong Dollar
(HKD) and USDollar (USD) as reported by the ONADA
Company between 24 March 1995 and 1 November 2000.
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Figure 2: (a) Exchange Rates HKD per US$; (b) scaling be-
havior in the Fourier domain, and (c) in the wavelet domain.
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Gait Data

Scaling laws were recently detected in the apparently “noisy”

variations in the stride interval (duration of the gait cycle) of human

walking.

The experimental data consist of measurements on a healthy

subject who walked for 1 hour at his usual, slow and fast paces. The

stride interval fluctuations exhibited long-range correlations with

power-law decay for up to a thousand strides at all three walking rates.

It is curious that during metronomically-paced walking, these

long-range correlations disappeared; variations in the stride interval were

anti-correlated.



26

Participants in this experiment had no history of any

neuromuscular, respiratory or cardiovascular disorders, and were taking

no medications. Mean age was 21.7 years.

Subjects walked continuously on level ground around an obstacle

free, long (either 225 or 400 meters), approximately oval path and the

stride interval was measured using ultra-thin, force sensitive switches

taped inside one shoe.

Figure shows 2048 data points for one subject. Slow and fast

stride intervals have slopes of -0.91 and -0.97 respectively, and stride

intervals for normal walk show scaling with -0.74 slope.

0 500 1000 1500 2000
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

step

s
tr

id
e
 i
n

te
rv

a
l

Slow
Normal
Fast

0 1 2 3 4 5
−22

−20

−18

−16

−14

−12

−10

slope = −0.8

Slow
Normal
Fast

1 2 3 4 5 6 7 8 9 10
−18

−16

−14

−12

−10

−8

−6

−4

slope = −0.8

Dyadic Scales
lo

g
2

 S
c
a

le
−

A
v
e

ra
g

e
d

 E
n

e
rg

y

Slow (−0.91)
Normal (−0.74)
Fast (−0.97)



27

EEG Data

This data set represents fluctuations of measured electrical

potential (in µV ) derived from brain activity of a patient during an

epileptic seizure.

Recorded in the ECT Lab at Duke University Medical Center

(Curtesy of Dr. B. Krystal).

A patient undergoing ECT therapy had measuring electrodes in

his scalp and this particular time series is one of several “channels.”



28

0 2000 4000 6000 8000 10000 12000 14000 16000
−400

−300

−200

−100

0

100

200

time

s
ig

n
a
l

0 1 2 3 4 5 6 7 8 9
−15

−10

−5

0

5

10

15

20

slope = −2.5

0 2 4 6 8 10 12 14
6

8

10

12

14

16

18

20

slope = −2.5

Dyadic Scales

lo
g

2
 S

c
a

le
−

A
v
e

ra
g

e
d

 E
n

e
rg

y

Outstanding problems for this kind analysis include the

prediction, classification, and space-time localization of seizures, see

Benedetto and Colella (1995) for wavelet based diagnostic methodology.

The original data set covers a 104-second span at a frequency of 256

observations per second, but for our analysis we took a mid-segment of

length 214.

A power law with slope of -2.5 was found only at the end of

spectrum (several “binomial decades”).
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Wind Speed

The classical data set of Haslett and Raftery (1989) contains

daily average wind speeds for 1961-1978 at 12 synoptic meteorological

stations in the Republic of Ireland.

Recorded are square roots of daily wind speeds in knots (1 knot

= 0.5148 metres/second). The 12 stations are Roche’s Point, Valencia,

Rosslare, Kilkenny, Shannon, Birr, Dublin, Mullinger, Claremorris,

Clones, Belmullet and Malin Head, (RPT, VAL, ROS, KIL, SHA, BIR,

DUB, CLA, MUL, CLO, BEL, MAL) as indicated by the map on page 2

of the Haslett-Raftery paper.
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Bellcore Internet Data

The original file that contains a record of a million packet

arrivals on an Ethernet was compiled at the Bellcore Morristown

Research and Engineering facility. Each line contains a floating-point

time stamp (representing the time in seconds since the start of a trace)

and an integer length (representing the Ethernet data length in bytes).

The hardware clock had an actual resolution of 4 microseconds.

The trace in file BC-pAug89[from

http://ita.ee.lbl.gov/html/contrib/BC.html] began at 11:25 on August

29, 1989, and ran for about 3142.82 seconds (until 1,000,000 packets had

been captured). In our scaling analysis we used 219 data points and the

Figure shows 512 data points (about 2 seconds of data).
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slope = − 0.64

Due to intrinsic nature of the traffic, the data are clustering into

three groups (sizes), at about 150, 1100, and 1500 bits. Clearly, the

package size is not described by any nice, a textbook distribution.

In our scaling analysis we used 219 data points and the Figure

shows 512 data points (about 2 seconds of data). These data were first

analyzed by Leland et al. (1994) and after, by other researchers who

utilized various tools (ARFIMA, Stable Levy Processes, etc).
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ON-OFF Data

ii=2^9;

obj=[];

mu=[0 1];

k=1;

for i = 1:ii

jj = floor(rand(1,1)*2^8)+1;

ind= floor(2*rand)+1;

for j=1:jj

obj=[obj mu(ind)];

end

end
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Figure 3: (a) OnOff Data with Uniform Duration; (b) Scaling
Behavior in the Wavelet domain.
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More Examples...

High Frequency Measurements of Pupil Diameter (200Hz)

Industrial Production: Chicken on Kill Line (1 year worth of

data at rate 180 per minute).

Orthosis Data. The data acquired by Dr. Amarantini David and

Dr. Martin Luc (Laboratoire Sport et Performance Motrice, EA 597,

UFRAPS, Grenoble University, France.

Georgia Tech Biology Lab Multiple Channel Brain Signals up to

1000Hz.

Danube level data.

Etc...


