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The Reverend

e The model for a typical observation X conditional on

unknown parameter 0 is f(xz|f). As a function of 6,
f(xz|0) = £(0) is called likelihood. The functional form of f is
fully specified up to parameter 6.

e The parameter 6 is supported by the parameter space ©
and is considered random variable. The random variable 6

has distribution 7(6) that is called prior.




e If the prior for 0 is specified up to parameter 7, w(0|7), 7 is
called hyperparameter.
e The distribution h(x,0) = f(z|0)n(0) is called joint

distribution.

e Joint distribution can be factorized differently,
h(x,0) = w(0|x)m(x).
e The distribution 7(6|x) is called posterior distribution for 6,

given x.

e The marginal distribution m(x) can be obtained by

integrating out the parameter 6 from the joint distribution

h(x,8),

/@ h(z,0)do = /@ £(x]0)7(6)do.




e Therefore, the posterior w(6|z) can be expressed as

oy = 100 _ J00) _ Sl
m(x) m(z)  [o f(x]0)w(0)d6

e Suppose Y ~ f(y|0) is to be observed. (Posterior)

predictive distribution of Y, given observed X = x is

F(yle) = /@ F(510)m(6]2)do

The marginal distribution m(y) = [g f(y|6)7(6)do is

sometimes called prior predlctlve dlstrlbutlon.




B Wavelet Transforms =—> Wavelet Domains

B STATISTICAL MODELING in Wavelet Domains instead

in the domains of original data.

B (Critically Sampled (Orthogonal) [The topic of
Lecture 1]

B Redundant (Stationary, Continuous, Frames)

B What is Better: Parsimony or Redundancy?




B Example: Minimal and Redundant Wavelet Domains.
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Figure 1: (left) DWT;
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B Wavelet-like and Related Transformations

B Atomic Decompositions, Pursuits, General Time /

Frequency Methods.
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Figure 2: (left) Bat signal; (right) Its Wigner-Ville distribution




Model Based Wavelet Data Processing

Wavelet Coeflicients: “Detail” & “Smooth”

WL

Processed DATA |«+<— |Process (Detail) Coefficients

Process =
B Shrink
B Transform
m Simulate New, Construct
B Resample

m Split
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B Various shrinkage /thresholding methods. (Start with
Donoho, Johnstone,& Coauthors, the early 1990’s)

B Shrinkage induced by statistical modeling in the wavelet

domain.

L Estimate 6 by 0 and set f as W—1(9)




Location model on d, f(d — §|parameters)

® Dimensionality of the model (Do not worry — wavelets

decorrelate)

B Accounting for dependence (neighbors,

parent-children), Blocking strategies (classical), Many Bayes
solutions (MCMC, hidden MC’s).

® Model complexity /efficiency compromise.
B Simple models/Fast shrinkage o Realistic?

B Complex models o Useful?
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Our Focus: Bayesianly Induced Shrinkage

B Why Bayes? Prior information about regularity,
self-similarity, periodicity, energy, and modality of the signal.

" g Bayes Rule. Does it shrink? Well, not always.

B Prior Selection [Priors on 6, o2, hyper-priors|; What is

our intuition about parameters in the wavelet-domain

models?

B Need for Empirical Bayes.
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" Complex Models: Often computationally
prohibitive, Require MCMC and “MCMC-educated” users,

Practitioners uneasy about.

" Simple Models: Efficient Shrinkage.

Normal Likelihood + Plug-in (hyper)Parameters —

Observations of empirical wavelet coeflicients disagree with
the model!
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Example: colorblue BAMS (Bayesian Adaptive
Multiresolution Smoother).

B A compromise between model reality/efficiency.

Model:

|6, 0%] ~ N(0,0°); 0% ~E(n), p>0.

Marginal Model (o2 is out!):

1
|d|0] NDg(Q,\/—Q—M); \/7e V2uld- 9'

Prior:

Ole] ~ g+ (1 —€)DE(0,7), € = e(multiresolution level).




Marginal (Should agree with d):

1 7-6_|d|/7— _ 1 6_\/2M|d|

_ - _ V2
d ~m(d) = eDE(O, 5 )+ (1 —¢) 71/,
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Bayes Rule:

(12 — 02)de= T 4+ 72 /(e W2H — =d/7)
(72 = 1/(2p))(re= 4™ — (1/y/2p)e~dv21).

0 =46(d) =

16
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Specification of Hyperparameters:

_ 1
* A= pseudos

pseudos = |1 — Q3|/C, where @1 and Q)3 are the first and
the third quartile of the finest level of details in the
decomposition and 1.3 < C' < 1.5.

. L 1 L
®€(j)=1- (j—coarsest+i) | = 2

e T = /0% — % (Information on selfsimilarity via 7.)




FUNCTION

VisuShrink

SureShrink

BLOCKS

0.6840 (0.0719 + 0.6122)

0.2225 (0.1369 + 0.0856

BUMPS

1.5707 (0.1165 + 1.4543)

0.6827 (0.2660 4+ 0.4167

DOPPLER

0.4850 (0.0523 + 0.4327

HEAVISINE

)
0.1204 (0.0339 + 0.0864)

0.0949 (0.0416 4 0.0534

)
)
)
)

(
0.2285 (0.0946 + 0.1340
(

FUNCTION

ABWS (CKM Chicago '97)

BAMS

BLOCKS

0.0995 (0.0874 + 0.0121)

0.1107 (0.0965 + 0.0142

BUMPS

0.3495 (0.2228 4 0.126

DOPPLER

7
0

0.1482 (0.0899 + 0.0584

HEAVISINE

(
0.1646 (0.1006 + 0.064
(

)
)
0.0874 (0.0442 + 0.0433)

( )
0.3404 (0.1976 + 0.1428)
( )
( )

0.0815 (0.0511 4 0.0304
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Figure 3: Heavisine signal: n = 1024, SNR=7.
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Matlab program implementing BAMS:
http://www.isye.gatech.edu/ brani/wavelet.html

From: RUGGERI, F. and VIDAKOVIC, B. (2005). Bayesian Modeling in
the Wavelet Domain, To appear as Chapter in Handbook of Statistics
Vol. 25, on Bayesian Statistics (C.R. Rao and Dipak Dey).

Some other Bayesian Procedures + Annotated Bibliography




Chipman, Kolaczyk, and McCulloch (1997) based on the

stochastic search variable selection (SSVS)

[d|f] ~ N(6,05%).

01;] ~ N (0, (¢;75)%) + (1 — )N (0, 75),

[v5] ~ Ber(p;).
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5(d) = | P(y; = 1d)— (jj(?ij + P(v; = 0|d)

where

pjm(dly; = 1)
(1 —pj)m(dly; = 0)

P(v; =1]d) =
and
w(dyy = 1) = bpor (oyryy2(d) and w(dy; = 0)6,2,2(d).

De Canditiis and Vidakovic (2004) extend the ABWS method to
multivariate case (block shrinkage) and unknown o* using a mixture of

normal-inverse Gamma priors.
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Clyde, Parmigiani, and Vidakovic (1998): Biometrika

075,07 ~ N(O, (1 —5) +7ci0°),
Avjo?] ~ xi,

where A\ and v are fixed hyperparameters.

v ~ Ber(pj)
The posterior mean of 8| is
E(6|d,~) = (I, + C~')'d.

where I' and C are diagonal matrices with ~y;, and cjp,

respectively, on the diagonal and 0 elsewhere.




The posterior mean is obtained by averaging over all models.

Model averaging leads to a multiple shrinkage estimator of 6:

B(6|d) = wa\d r(I,+c") "4,

where 7(7|d) is the posterior probability of a particular
subset ~.
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The approximation can be achieved by either conditioning on
o (plug-in approach) or by assuming independence of the

elements in ~.

m(v|d) HPW (1= pjg) "

ajk(d, O')
1+ ajk(d, O')’

,Ojk:(d, O)

where

Djk _
ajk(d,a) = 1—]p‘k(1+cjk> 1/2-6Xp{2
J
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Abramovich, Sapatinas, and Silverman (1998) use weighted

absolute error loss and show that for a prior on 6
0] ~ mN(0,77) + (1 — 7;)5(0)
and normal A(6, 0?) likelihood, the posterior median is

Med(0|d) = sign(d) max(0, ¢). (1)

2 .
T; - O g1 (1 + min(w, 1)
0%+ 7; \/02 ‘|‘Tj2 2

1—m; \/73'2 + 07 { ’rj2d2 }
exp {4 — .
202

T, o (Tj2 + 0?)
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