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What are Wavelets?'

Jean Baptiste Joseph Fourier 1768-1830 and Alfred Haar 1885-1933

The first “wavelet basis” was discovered in 1910 when Alfred
Haar showed that any continuous function f(z) on |0, 1] can

be approximated by

fn(x) = (€0, f)Eo(x) + (€1, [)E1(x) + - + (Ens [)En ().




The Haar basis is very simple:
50( ) 1(0 Sz < 1)7
&1(z) 10<2<1/2) -1(1/2 <z < 1),
§a() V20 <z <1/4) - 1(1/4 <2 <1/2)],

En() 22M1(k-277 <x<(k+1/2)-277)
—1((k+1/2)- 277 <z <(k+1)-277)],...

where n is decomposed asn =27 +k, 7 >0, 0 <k <2/ —1.




sin(pi*x) + cos(2pi* x) + 0.6*1(x >0.5)




Function

f(x) =sinmx + cos2mrx + 0.6 - L(x > 1/2), 0 < x <1,
and three different levels of approximation in the Haar
basis. Approximations f3, fi5, and fg3 are plotted.

For any n > 1 the basis function &,, can be expressed as a

scale-shift transform of a single function &1,

577,(36) — gj,l-c(ili') = 2j/2§1(2j Y k), n =92 + k.

e &, n > 1 describe the details.

e {y(x) is responsible for the “average.”




Functions &1, &, £14, and &o5 from the Haar basis on [0, 1].




e The Haar wavelet decomposition of the function

2.1m

— /z(l —2) si 0<xz<1.
y(z) = Va(l - z) sin ——— e, 0w <

e The function is known as the doppler function (Donoho

and Johnstone)

e Implemented as a test function in almost all wavelet

software packages.




coefficients of support

§o 1
&1 1
&2 - &3 1/2
§a - &7 1/4
& - &1 1/8

€512 - £1023 1/2°

Coeflicients of doppler function in Haar basis presented in levels
determined by the length of support of corresponding basis

functions, &,,, n > 0.
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loppler (s10)
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Time domain values

Haar wavelet domain values

e Wavelets disbalance the data.
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ACF in time domain

ACF in wavelet domain
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e Wavelets whiten the data.

0

-0.05

-0.1
1 -01 <005 0 005 01




e Wavelets filter the data.
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e Wavelets detect self-similarity in data.

log(wavenumber)
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California Earthquakes

e A researcher from the Geology Department at Duke
University was interested in the possibility of predicting

earthquakes by monitoring water levels.

e Water level measurements from six wells located in

California, were taken every hour for approximately six years.

e The goal was to smooth the data, eliminate the noise, and

inspect the signal at pre-earthquake time.
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Julian Day Julian Day

Raw data for hourly measurements (one year, 8192 = 2'® observations).

The line-like artifact (enlarged in right panel) corresponds to the
earthquake time (Julian day of 417).
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Comparison of several smoothing methods. Upper, Left: Data smoothed
by kernel method (normal window, k=5); Upper, Right: Data smoothed

by loess method; Lower, Left: Data smoothed by supsmu method;
Lower, Right: Wavelet Smoothed Data




Multiresolution analysis (MRA) is a sequence of closed
subspaces V,,,n € Z in La(R)

-CV.oCcV_ VgV CVoC....

The hierarchy in MRA is constructed such that

e VV-spaces are self similar,

f(x) e Vp iff f(2"x) € V,.
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e There exists a scaling function ¢ € Vi whose integer

translates span V|,

Vo={f € La(R)| f(z) =) exoplx—k)},

k

and for which the set {¢(e — k), k € Z} is an orthonormal

basis.

e (Scaling equation) Since Vy C V7,

O(x) = D pez i V26(2z — k).
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e Normalization.

ZkzeZ hi = \/5

e Orthogonality. For any [ € Z,

> o hehig—2 = ;.

An important special case is [ = 0

Yphi=1
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Link between h and ¢

Transfer function:

1 N U
mo(w) = = 3 hee ™ = - H W)

kez V2

Recall the scaling equation:

P(x) = D pez M V2¢(2z — k).

In the Fourier domain:

Q(w) =mo (5) ¢ (3)
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Mother Wavelet

e Whenever sequence of subspaces satisfy MRA properties there exists
an orthonormal basis for La2(R),

{Yju(x) = 272927z — k), j,k € Z}

such that {¢;x(z), j-fixed, k € Z} is an orthonormal basis for the
“difference space” W; =V;11 © V.

(because of containment Wy C V1),

P(z) =) gr V20(2z — k),

keZ
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e Quadrature mirror relation

gn = (—=1)" hi_p.

e Any Lo(R) function can be represented as

= P w;]

j=—00

For any fixed jop the decomposition Ly(R) = V;, & &2

j= ]OWj

corresponds to representation

F(@) = cioxbjon(@) + > > dipthj iz

k j=jo k

24



Haar Example

¢(2z) + (2 — 1) =

¢(2z) — p(2x — 1) =

which gives the wavelet filter coefficients:

1
hi = —. and

V2

1
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Left: Multiresolution Analysis of doppler function. The original function

in Vi is a sum of projections on V4 and Wy4—Wy subspaces. Right:

Coarsening doppler function by projecting it to V-subspaces.
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For the Haar wavelet, the transfer function becomes

ho = hy =
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Functions |mg(w)|? = cos?

“ and |mq(w)|? = sin® ¢ for the

Haar case.
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Ingrid Daubechies was first to construct compactly supported

orthogonal wavelets with preassigned degree of smoothness.

Graphs of scaling and wavelets functions from Daubechies family,

N =2,3,4,8, and 10.
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DAUB2

DAUB3

DAUB4

DAUBS5

© 00 N O O b= W N = Ofx

0.4829629131445
0.8365163037378
0.2241438680420
-0.1294095225512

0.3326705529500
0.8068915093110
0.4598775021184
-0.1350110200102
-0.0854412738820

0.0352262918857

0.2303778133088
0.7148465705529
0.6308807679298
-0.0279837694168
-0.1870348117190
0.0308413818355
0.0328830116668
-0.0105974017850

0.1601023979741
0.6038292697971
0.7243085284377
0.1384281459013
-0.2422948870663
-0.0322448695846
0.0775714938400
-0.00624149021273
-0.0125807519990
0.0033357252854




ho +hi + ho 4+ hy = /2
hi+hi+hs+hs=1
—hy1 4+ 2hy — 3h3 =0

ho ho + hy hs =0

e Pollen-type Parameterization [s = 2v/2]:

h, tor N =2

14+ cosp —sing)/s
1 4+ cosp +sinp)/s

)
)

1 —cosp+sing)/s
)

1 —cosp —siny)/s
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e Strang - Fix condition |, ¢(x — k) =1,
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Discrete Wavelet Transforms'

Fourier Fourier

Methods || Integrals

Fourier

Series

Discrete

Fourier Transforms

Wavelet Continuous

Methods || Wavelet Transforms

Wavelet

Series

Discrete

Wavelet Transforms
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e The Cascade Algorithm [Mallat, 1989]

> hi—acj,

k

E 9k—21Cj k

k

E Cj+1,zhk—2z+g djt+1,19k—21-
z z

34



35



36



37

Let y = (1,0,-3,2,1,0,1,2). The values f(n) =y,, n=0,1,...,7
are interpolated by piecewise constant function. Assume that f

belongs to Haar’s multiresolution space Vj.

h={ho,hi} = {1/v2,1/vV2}; g = {g0, 1} = {1/V2,-1/Vv2}.
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V2 V2 V2 V2

g*

|
V2 V2 V2

V2

(D L




y — (Gy,GHy, GHy, ..., GH" 1y, HFy).

~ ~

(H*a)n — Z hn—Qkak
k

(G a)n = Zgn—2kak-
k
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Any function f € Lo(R%) can be represented as

flxy,...,xq) = Z Cio:kPio:k (1., Xq)

k

2d_q

P XY

jzjo k =1

where k = (ki1,...,kq) € Z% and

2jd/2 1 qb(i)(Zja?i — ]ﬁ)

=1

d
=1

with &€ = ¢ or ¥, but not all £ = ¢.
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/Wo(a:) dx 1,
Wan () > he V2Wn (22 — k),

Want1(x) = ng VoW, (2x — k), n=0,1,2,..
k

Wink(x) =2"2W,(2%x — k), (j,n,k) € Zx N x Z.

j — scaling, n — oscillation (sequency), k — translation.
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http://www.isye.gatech.edu/ brani/wavelet.html I

e Meyer, Y. (1992). Wawvelets and Operators. Cambridge
Studies in Advanced Mathematics 37. Cambridge. o
Daubechies, 1. (1992). Ten Lectures on Wavelets. Society for
Industrial and Applied Mathematics.

e Strang, G. and Nguyen, T. (1996). Wavelets and Filter
Banks, Wellesley-Cambridge Press, email: gs@math.mit.edu

e Mallat, S. (1998). Wawvelet Tour of Signal Processing,

Academic Press, San Diego.

e Vidakovic, B. (1999). Statistical Modeling with Wauvelets.
Wiley.

e Software Wavelab (Donoho and coauthors, Stanford)
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NEXT: Statistical Modeling in the Wavelet Domain
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