|

|
ABS14 - 2014 Applied Bayesian Statistics School
APPLIED BAYESIAN NONPARAMETRICS
Villa del Grumello, Como, Italy
June, 16-20, 2014
|
|
·
[13.00- ] Registration
·
[14.00-16.00] Bayesian
clustering, the Chinese restaurant process, Gibbs sampling
·
[16.00-16.30] Break
·
[16.30-17.30] The
Polya urn, the Hoppe urn, exchangeability
·
[17.30-17.40] Break
·
[17.40-19.00] Participants' Talks
|
17:40-18:00 |
M. Sesia: "Belief Propagation on the Random Field Ising Model"
|
|
18:00-18:20 |
I. Bianchini: "A Bayesian nonparametric model for density and cluster estimation: the ε-NGG mixture model" |
|
18:20-18:40
|
S. Heaps: "Bayesian modelling of compositional heterogeneity in molecular phylogenetics"
|
|
18:40-19:00
|
N. Pratanwanich: "Topic-based modeling on author contribution and author prediction"
|
·
[19.10-21.00] Welcome buffet at Villa del Grumello
·
[09.00-10.30] Stick-breaking,
the Dirichlet process, slice sampling
·
[10.30-11.00] Break
·
[11.00-12.30] Pitman-Yor,
power laws
· [12.30-14.00] Lunch at Villa del Grumello
·
[14.00-16.00] Completely
random measures
·
[16.00-16.15] Break
·
[16.15-17.15] Participants' Talks
|
16:15-16:35 |
G. Zanella: "Bayesian complementary clustering, MCMC and Anglo-Saxon placenames
|
|
16:35-16:55 |
A. van Rossum: "Are nonparametric Bayesian methods ready for point clouds?"
|
|
16:55-17:15
|
A. Benavoli: "The Imprecise Dirichlet Process Statistical Package"
|
·
[09.00-10.30] Bayesian latent feature models: Beta-Bernoulli and
Indian buffet processes
·
[10.30-11.00] Break
·
[11.00-13.00] BNP for statistical network modelling
·
[13.00- ] Free afternoon and evening
·
[09.00-11.00] PRACTICAL: Clustering with Dirichlet process mixtures
·
[11.00-11.30] Break
·
[11.00-12.30] PRACTICAL: Inference on networks with BNP
· [12.30-14.00] Lunch at Villa del Grumello
·
[14.00-15.30] Dependent Dirichlet processes and dynamic clustering
·
[15.30-16.00] Break
·
[16.00-18.00] More applications of BNP: natural language processing,
rank data
·
[19.30- ] Farewell dinner at Il Solito Posto - Via Lambertenghi 9
·
[09.00-11.00] The
hierarchical Dirichlet process, applications to topic models
·
[11.00-11.30] Break
·
[11.30-13.00] Applications
to time series modeling