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Summary

I The economics of running an experiment in the online service
economy are different than manufacturing or agriculture.

I Costs have shifted from production to opportunity cost.

I Multi-armed bandits minimize the opportunity cost of running an
experiment.

I Explicitly minimizing cost is hard, but a simple Bayesian heuristic
known as Thompson sampling produces good outcomes.

Steven L. Scott (Google) Bayesian Bandits June 21, 2016 2 / 46



Multi-armed bandits

(a) “one armed bandit” (b) multi-armed

I Sequential experimental design.

I Produce the highest reward under an uncertain payoff distribution.
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Outline

Motivation and background

Thompson sampling

When to stop experimenting

Incorporating good ideas from DOE
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Motivation and background

Classical experiments
Fisher arrives at Rothamstead in 1919

R. A. Fisher Rothamstead station.
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Motivation and background

The classical experiment playbook

I Steps:
I Decide which factors you want to test.

Think about possible interactions.
I Create a “design matrix” that will allow you to estimate the effects

that are likely to be important.
I Power analysis or “optimal design” for sample size at each design point

(row of the design matrix).
I Maybe “block” on contextual factors (men / women) to reduce

variance.
I Do the experiment (collect the data).
I Analyze the results.

I Get it right in the beginning, because you’ve only got one shot!

I All the probability calcuations are done before seeing any data,
because the experiment had to be planned before any data were
observed.
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Motivation and background

Experiments through the ages

I Agricultural
I Experiments take a long time (seasons).
I Inputs (land, labor, machinery) are expensive.

I Industrial
I Time requirements are typically less.
I Inputs still expensive. (Factory retooling, lost units)

I Service
I Experiments fast (real time).
I Inputs are cheap (programmer time).
I “All” cost is opportunity cost.
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Motivation and background

Experiments today: outsource the details
Can be run through online optimization frameworks (e.g. Google Optimize 360).
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Motivation and background

Website optimization
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Motivation and background

Service experiments

The economics are favorable.

I No cost to acquiring experimental units.

I Minimal costs to changing the way to treat them.

I Automated experimental frameworks.

Why not experiment with everything, all the time?

I Some do (esp. big tech companies)

I For many, the opportunity cost is a barrier.
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Motivation and background

Stats education can do real damage here
From a misguided blogger focused on type-I errors

If you run experiments: the best way to avoid repeated
significance testing errors is to not test significance repeatedly.

Decide on a sample size in advance and wait until the experiment
is over before you start believing the “chance of beating original”
figures that the A/B testing software gives you.

“Peeking” at the data is OK as long as you can restrain yourself
from stopping an experiment before it has run its course.

I know this goes against something in human nature, so perhaps
the best advice is: no peeking!

I Type I errors cost (effectively) zero. Type II errors are expensive.
I This is terrible advice (he later suggests Bayesian design).
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Thompson sampling

Outline

Motivation and background

Thompson sampling
The binomial bandit

When to stop experimenting

Incorporating good ideas from DOE
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Thompson sampling

Multi-armed bandit: Problem statement

I Rewards y are generated from a probability distribution

fa(y |θ).

I Goal: Choose action a to maximize your total reward.

I Challenge: You don’t know θ, so you need to experiment.

I Trade-off:

Exploit Take the action your model says is best.
Explore Do something else, in case your model is wrong.

I Uncertainty about θ is the critical piece.
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Thompson sampling

Example reward distributions

Binomial Rewards are independent 0/1. θ is a vector of distinct
success probabilities for each arm.

Logistic Rewards are independent 0/1. θ is a set of logistic regression
coefficients for a design matrix. The design matrix may
include both experimental and contextual factors.

Restless bandits Rewards accrue in a time series, where the rules are
changing. θt is a set of logistic regression coefficients
modeled as θt = θt−1 + εt .

Hierarchical Experiments share structure, perhaps because of between
group heterogeneity.

Etc (Continuous rewards, continuous action spaces, your problem
here.)
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Thompson sampling

The Thompson heuristic
[Thompson(1933)]

Thompson sampling

Randomly allocate units in proportion to the
probability that each arm is “best.”
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Thompson sampling

Computing “optimal arm probabilities”

The slow way:

I Given data y, simulate θ(1), θ(2), . . . , θ(N) from p(θ|y).

I For each draw, compute va(θ), the value of action a conditional on θ.

I Let Ia(θ) be the indicator that action a has the largest value. (Break
ties at random).

I Set

wa =
1

N

N∑
g=1

Ia
(
θ(g)

)
The fast way:

I Draw a single θ ∼ p(θ|y).

I Choose a to maximize va(θ).
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Thompson sampling

Computing the probability that one arm beats another.
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X = P(θ1|20 successes, 50 trials) X = P(θ1|20 successes, 50 trials)
Y = P(θ2|2 successes, 3 trials) Y = P(θ2|20 successes, 30 trials)

P(θ1 > θ2|y) ≈ .16 P(θ1 > θ2|y) ≈ .009
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Thompson sampling

Some nice features of Thompson sampling

1. Easily understood principle

Arms attract observations in proportion to their probability
of being optimal.

2. Easy to implement
I Can be applied to a very generally
I Just need to be able to sample from p(θ|y)
I Free of arbitrary tuning constants

I No need to set “exploration fraction” (ε-learning)
I No decay schedule
I No “discount factor”

I It can be used with batch updates of the posterior.

3. Nearly optimal performance
I Obviously suboptimal arms are quickly dropped, increasing reward.
I Increases the sample size for picking the winner from the “good” arms.
I Allocations are attracted to performance and uncertainty.
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Thompson sampling

Other methods

Several other well known methods and heuristics [Sutton and Barto(1998)]

I Equal allocation

I Greedy

I ε−greedy

I ε−decreasing

I Softmax learning

I Upper confidence bound

I Gittins index

I Dynamic programming
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Thompson sampling

Upper confidence bound (UCB)
Optimism in the face of uncertainty.

CA B

Pick this one

v
a
lu

e

I Pick the arm with the highest upper
confidence bound.

I Not the usual bounds from normal
approximations: extra factors of log n in
the SE numerator.

I [Auer et al.(2002)] showed UCB
satisfies optimal rate of exploration
[Lai and Robbins(1985)].

I UCB can be effective, but some skill is needed to find the “right”
confidence set.

I Replacing confidence sets with posterior distributions finds the “right”
set automatically. [Russo and Van Roy(2014)]
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Thompson sampling

Thompson vs UCB
Results from [Chapelle and Li(2011)]
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Thompson sampling

A timeline of recent literature

I [Scott(2010)] and [Chapelle and Li(2011)] present empirical results
suggesting Thompson sampling is a good idea.

I [May et al.(2012)] prove asymptotic convergence.
I All arms are visited “infinitely often.”
I Almost all time spent on optimal arm.

I Several authors provide finite time regret bounds in the case of
independent Bernoulli arms, including [Kaufmann et al.(2012)],
[Bubeck and Liu(2013a), Bubeck and Liu(2013b)] and others.

I [Russo and Van Roy(2014)] is the current state of the art. Regret
bounds for nearly arbitrary reward distributions.
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Thompson sampling The binomial bandit

How bad is equal allocation?

I Consider two arms: θ1 = .04, and θ2 = .05.

I Plan a classical experiment to detect this change with 95% power at
5% significance.

> power.prop.test(p1 = .04, p2 = .05, power = .95)

n = 11165.99

NOTE: n is number in *each* group

I We need over 22,000 observations.

I Regret is 11, 165× .01 = 111 lost conversions.

I At 100 visits per day, the experiment will take over 220 days.

Steven L. Scott (Google) Bayesian Bandits June 21, 2016 23 / 46



Thompson sampling The binomial bandit

Two-armed experiment
Bandit shown 100 visits per “day”
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Thompson sampling The binomial bandit

Two armed experiment
Savings vs equal allocation in terms of time and conversions

Source: https://support.google.com/analytics/answer/2844870?hl=en
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Thompson sampling The binomial bandit

Bandits’ advantage grows with experiment size

Now consider 6 arms (formerly the limit of GA Content Experiments).

I Compare the original arm to the “best” competitor.

I Bonferroni correction says divide significance level by 5.

> power.prop.test(p1 = .04, p2 = .05, power = .95,

sig.level=.01)

n = 15307.8

NOTE: n is number in *each* group

I In theory we only need this sample size in the largest arm, but we
don’t know ahead of time which arm that will be.

I Experiment needs 91848 observations.

I At 100 per day that is 2.5 years.
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Thompson sampling The binomial bandit

6-arm experiment
Still 100 observations per day
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Thompson sampling The binomial bandit

Huge savings vs equal allocation
Partly due to ending early, and partly due to lower cost per day.
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Thompson sampling The binomial bandit

Daily cost diminishes as inferior arms are downweighted
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When to stop experimenting

Outline

Motivation and background

Thompson sampling

When to stop experimenting

Incorporating good ideas from DOE
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When to stop experimenting

Value remaining
A better name than “per-play regret.”

I Industrial experiments
happen because people want
to improve something.

I You can stop experimenting
when you’ve squeezed all the
value out of the experiment.

I Let vi∗ = value in draw i of
best overall arm.

I Let v∗i = value of best arm
in draw i .

I v∗i − vi∗ is a draw of the
value remaining in the
experiment.
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When to stop experimenting

“Potential value remaining” shrinks as n grows.

successes 30 5 20
trials 100 50 80
wat 0.76 0.00 0.24

successes 120 20 80
trials 400 200 320
wat 0.93 0.00 0.07
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When to stop experimenting

Features of PVR

I Nice
I If a subset of arms tie, the experiment can still end.

This can easily happen in multi-factor experiments.

I If any single optimal arm probability exceeds .95 then PVR = 0.
(Assuming the .95 quantile)

I Units are meaningful to the experimenter.
Allows the experiment to end based on “practical significance.”

I PVR is not a hypothesis test
I PVR makes no attempt to control “type I error rate.”

I If two (or more) arms tie, then no attempt is made to favor the
original.

I If switching costs are relevant, they need to be baked in.
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Incorporating good ideas from DOE
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Incorporating good ideas from DOE

Bringing in good ideas from DOE

I Experiments in the real world involve multiple factors.

I The “1-way” layout is a bad idea because the number of “arms”
explodes with multiple experimental factors.

I Classic DOE uses fractional factorial experiments to control the
combinatorial explosion.

I The fractional factorial idea remains really powerful in a sequential
world.
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Incorporating good ideas from DOE

The power of fractional factorial experiments
A single observation provides partial information on several configurations

I 3 fonts × 5 themes × 5 colors = 75 configurations
I A single run of configuration (Font=3, Color=4, Theme=2) . . . gives

partial information on all configurations with
I Color=4, or
I Theme=2, or
I Font=3

I Each observation teaches us something about 43 configurations.
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Incorporating good ideas from DOE

Fractional factorial experiments

The classic way of doing a fractional factorial experiment:

I Imagine that you will be analyzing the results of your experiment with a
linear regression model.

I Choose a set of interactions that you’re willing to live without.

I Allocate observations so that the remaining coefficients are “estimated as
accurately as possible.”

I X-optimal design, with X = D,G ,A, etc.
I Heavily dependent on Gaussian linear models (so that mean and

variance are distinct, and variance only depends on X .).

I Usually restrict to a small subset of potential design point (rows in the
design matrix).
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Incorporating good ideas from DOE

Fractional factorial bandits

How to do it with bandits:
Thompson sampling with logistic regression.

I This is really “full factorial” randomization but “fractional factorial
modeling.”

I Easy enough to fractionate the design matrix if there is reason to do
so (e.g. eliminate problematic rows).
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Incorporating good ideas from DOE

How to take advantage of “free” replications
Regression model with dummy variables

Int F2 F3 C2 C3 C4 C5 T2 T3 T4 T5

1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 1 0 1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0
1 0 1 0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0
1 0 1 0 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 0 0 1 0
1 0 0 0 0 1 0 0 0 0 0

...

(75 rows, 11 columns)
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Incorporating good ideas from DOE

Interactions

Interaction # coef Interpretation

Font:Theme 8
Helvetica bold has a greater impact with
Theme 1 than Theme 2.

Font:Color 8
Orange increases CTR, but only with
Palatino italic

Color:Theme 16 ...

Font:Color:Theme 32
The incremental benefit of Orange with
Palatino italic is muted in Theme 3, but
magnified in Theme 4

Main Effects 2 + 4 + 4
Intercept 1

Total 75

High order interactions tend to be Small, Noisy, and Confusing.
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Incorporating good ideas from DOE

The FF bandit has many fewer parameters to learn, so it
learns much faster, and wastes fewer impressions.

Fractional factorial (probit) bandit Binomial bandit

100 impressions per update cycle.
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Incorporating good ideas from DOE

Controlling for context
In a simulation with important interactions between experimental and contextual factors

Interactions with environ-
ment confound binomial
and FF bandits.
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Incorporating good ideas from DOE

Controlling for context
In a simulation with an important environmental effect, but no interactions

Lower variance for envi-
ronmental bandit.
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Incorporating good ideas from DOE

Conclusion

I The economics of the modern service economy are different than
those of agriculture and industry.

I The world improves rapidly by experimenting with everything all the
time, but experiments have to be cost effective.

I The cost of experiments can be reduced by
I Fractional factorial designs that test several factors at once.
I Sequential methods that down-weight clearly underperforming arms.

I Thompson sampling is an effective, robust method of running a
sequential experiment that lets you focus on getting the model right.
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