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Introduction to Bayesian Statistics

Use probabilities informally to express our INFORMATION and BELIEF about
UNKNOWN quantities: the probability that tomorrow morning it will be cloudy in
Florence is ... , according to my knowledge (on the average weather in June and
today’s weather in Florence)

But what if a storm occurs in the evening? I will UPDATE the probability of that
event on the basis of some DATA (rain this evening!)

3 Conditional probabilities and Bayes’ Theorem provide a rational method for
updating beliefs in the light of new information (DATA)

3 The process of inductive learning via Bayes’ Theorem is referred to as

BAYESIAN INFERENCE

3 It is a typical scientific approach:
• the prior belief is UPDATED via observed data and yields posterior distribution
• it suggests that scientific inference is based on 2 parts: one depends on the

scientist’s subjective opinion and understanding of the phenomenon under study
BEFORE an EXPERIMENT was performed, the other depends on the
observed data the scientist has obtained from the experiment.
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References and notation

This lesson is based mainly on Regazzini (2015), an item of the encyclopedia Wiley
StatsRef.

• X is a separable and complete metric space
• X is the Borel σ–algebra of subsets of X
• (Xn)n≥1 is a sequence of random elements defined on some probability space
(Ω,F ,P) and taking values in (X∞,X ∞)

(Xn)n≥1 is the sequence of observations (DATA); Xn is the result of the random
experiment at trial n

• PX space of all probability measures on (X,X ), with the topology of weak
convergence

• PX Borel σ–algebra of subsets of PX

• A random element p̃ defined on (Ω,F ,P) and taking values in (PX,PX) is a
random probability measure.
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The Bayesian paradigm

Traditionally:

X1,X2,X3, . . . |p̃ = p i.i.d.∼ p “true” distribution of each observation

p̃ ∼ Q prior

⇒ π(A1 × · · · × An × B) := P(X1 ∈ A1, . . .Xn ∈ An, p̃ ∈ B) =
∫

B

n∏
i=1

p(Ai)Q(dp)

π is a probability on X∞ × PX

There exists a function Qn(B; x(n)), B ∈ PX, x(n) := (x1, . . . , xn) ∈ Xn such that

3 B 7→ Qn(B; x(n)) is a probability on PX for all x(n);

3 x(n) 7→ Qn(B; x(n)) is X n-measurable for all B;

3 Qn(B; x(n))
a.s.
= P(p̃ ∈ B|X(n)) for all B

⇒ Qn(·;X(n)) is the conditional distribution of p̃ (the ‘true” distribution of the data),
given X(n) := (X1, . . . ,Xn) (X Polish space)

Qn(·;X(n)) is the posterior distribution of p̃, given observations X1, . . . ,Xn
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Bayes’ Theorem for dominated models

Xi|θ̃ = θ
i.i.d.∼ fθ(·) “true” density of each observation

θ̃ ∼ π probability on Θ Euclidean space

Interpretation: θ 7→
∏n

i=1 fθ(xi) likelihood, π(dθ) prior

Then the posterior distribution of θ̃, given X1 = x1, . . . ,Xn = xn, can be computed by
Bayes’ Theorem:

P(θ̃ ∈ B|X1 = x1, . . . ,Xn = xn)
a.s.
=

∫
B

∏n
i=1 fθ(xi)π(dθ)∫

Θ

∏n
i=1 fθ(xi)π(dθ)

, B ∈ B(Θ)

Proof: definition of conditional distribution (as the solution of an integral equation) +
Radon-Nikodym Theorem
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The prior distribution

Making inference about θ̃ is to learn about the unknown θ̃ from the DATA: based on
the data, explore which values of θ̃ are probable, what might be plausible numbers as
estimates of the different components of θ and the extent of uncertainty associated
with such estimates

the distribution of θ̃, prior distribution: it quantifies the uncertainty about θ̃ prior to
seeing data

The prior represents the subjective belief and knowledge 7→ subjective prior,

or, a conventional prior supposed to represent small or no information 7→
noninformative/vague/objective prior EARGH!!!! E Jupiter Fulminator could hurl
thunderbolts to us at any moment since now, since we follow, at least in principle,

Bruno de Finetti’s approach to Bayesian Statistics, i.e.
the subjective approach!
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seeing data

The prior represents the subjective belief and knowledge 7→ subjective prior,

or, a conventional prior supposed to represent small or no information 7→
noninformative/vague/objective prior EARGH!!!! E Jupiter Fulminator could hurl
thunderbolts to us at any moment since now, since we follow, at least in principle,

Bruno de Finetti’s approach to Bayesian Statistics, i.e.
the subjective approach!
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Bruno de Finetti

• born on 13 June 1906 in Innsbruck (Austria)
• at 17 he enrolled at the Polytechnic of Milan, aiming at getting a degree in

Engineering
• in 1925 he decided to leave Polytechnic and started studying Mathematics at the

newly opened faculty at Università di Milano
• in 1927 he got a degree in Applied Mathematics, with a thesis on affine geometry
• after his graduation, he started to work at what is now ISTAT, the Italian central

institute of Statistics, until 1931, when he started to work as an actuary in Trieste
(Italy) at the Assicurazioni Generali, and started to teach at the university there
(he had also qualified in a competition as university lecturer)

• in 1947 he obtained his chair as full professor
• in 1954 he moved to Università La Sapienza, Rome (Italy); he retired in 1976
• he died on 20 July 1985

• 1928: de Finetti presents his first results on exchangeability at the World Meeting
of Mathematicians in Bologna

• 1935: lectures at the Institut Poincaré, Paris (France); de Finetti (1937)
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Exchangeable sequences

Definition. The sequence (Xn)n≥1 is exchangeable if

(X1, . . . ,Xn)
d
= (Xπ(1), . . . ,Xπ(n))

for any n ≥ 1 and permutation π of (1, . . . , n).

• According to this definition, the order with which data are recorded is irrelevant
for inferential purposes

• it is a weak assumption, and translates lack of (enough) information through a
condition of symmetry

• For example, in coin-tossing sequence one would have

P[X1 = 0, X2 = 1, X3 = 1, X4 = 0] = P[X1 = 1, X2 = 0, X3 = 0, X4 = 1]
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Critical aspects of the Bayesian paradigm according to de Finetti
(Regazzini, 2015)

De Finetti gave his first results on exchangeability (he used the term equivalence) for
sequences of trials on a given phenomenon, all made under analogous conditions, i.e.
(Xn)n 0-1 r.v.’s, Xn = 1 if the n-th trial was a “success”

3 Phenomena whose trials are independent with a fixed but unknown probability
distribution (p.d.) are exchangeable, since the law of (Xn)n is a mixture of Bernoulli
r.v.’s.

3 This statement is controversial according to de Finetti’s subjectivist conception of
probability; the reference to an unknown probability is devoid of sense and, in any
case, obscure and specious. In addition, it requires the specification of a law for the
fixed, though unknown, p.d., and, under the subjective point of view, such request is of
an ambiguous content.

In more modern terms: if Xi|θ
i.i.d.∼ Be(θ), θ ∼ F and the approach taken is subjective,

then
θ ∼ F is ambiguous
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The role of exchangeability according to de Finetti (Regazzini, 2015)

3 F, the unknown p.d. of θ, cannot represent the subjective belief unless θ has an
objective (i.e. “physical") meaning, that is, unless θ represents a well-specified
characteristic of the members of a statistical population.

Two examples:
• the sequence of drawings with replacement from an urn containing white and

nonwhite balls according to an unknown composition: Xn = 1 if the n-th drawn
ball is white, θ is the unknown proportion of white ball.

The composition is empirically verifiable!

• the sequence of tossing of the same coin: Xn = 1 if the n-th toss is H, θ is the
unknown probability of H in each toss.

The probability of H cannot be verified!

3Unlike these formulations, which are unfortunate and unclear in some respect, the
condition of exchangeability they met is more general, always meaningful and
sensible. De Finetti selected it to indicate a sufficiently general setting in which he
might prove the validity of the principle of induction:

in a sequence of homogeneous trials, the frequency distribution of the results of n past
trials can represent a good approximation, if n is “large”, to the conditional distribution
of the outcome of a future trial, given the observed frequency distribution.
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de Finetti’s representation theorem for events

Theorem. The sequence X(∞) = (Xn)n≥1 of 0-1 r.v.s’s is exchangeable if
and only if there exists a probability measure F on ([0, 1],B([0, 1])) such
that

P [X1 = x1, . . . ,Xn = xn] =

∫
[0,1]

θ
∑n

i=1 xi(1 − θ)n−
∑n

i=1 xi F(dθ)

for any n ≥ 1 and (x1, . . . , xn) in {0, 1}n.

Moreover, when (Xn)n≥1 is exchangeable (since P is σ-additive):

•
∑n

1 Xi

n
a.s.→ θ̃ ∼ F as n → +∞.

• Conditionally on θ̃, X1, . . . ,Xn|θ̃ i.i.d.∼ Be(θ̃) for all n
θ̃ ∼ F.
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Reinterpretation of the Bayesian paradigm through exchangeability

3 Therefore, there is a formal equivalence between exchangeable trials of the same
phenomenon (i.e. Xn’s are binary) and those trials that are designated as “independent,
with a fixed, but unknown, probability”.

3 The representation theorem may be used to justify the principle of induction with
reference to an excheangeable sequence of events:

If (Xn)n are exchangeable 0-1 r.v.’s, and φn :=
∑n

1 Xi/n, then∣∣∣P (Xn+1 = e1, . . . , ,Xn+k = ek|X1, . . . ,Xn)− φ
∑k

1 ej
n (1 − φn)

k−
∑k

1 ej
∣∣∣ a.s.→ 0, n → +∞,

for all (e1, . . . , ek) ∈ {0, 1}k, k = 1, 2, 3, . . . .

3 Roughly speaking its says that:

the frequency of success in n past trials can be used to evaluate the probability
distribution of “future” trials of the same phenomenon, if n is large.
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Comments on de Finetti’s work on exchangeability

3 De Finetti’s re-interpretation of the Bayesian approach is strictly linked to the
subjective notion of probability (i.e. definition of probability of an event through
coherence): the probability p of an event E is the personal degree of belief in the
event; p has to ensure that there exists no real value c such that any bet on E with
gain c(p − 1E) has realizations of the gain all strictly positive or all strictly
negative

3 De Finetti’s original approach to exchangeability was different from what I have
introduced here; see Cifarelli and Regazzini (1996) for an historical picture of de
Finetti’s contributions

3 exchangeability is a term introduced by Pólya; de Finetti used eventi equivalenti
(equivalent events), other authors used symmetric

3 the infinite exchangeability is a keypoint here: finite exchangeable sequences
have different representations.
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de Finetti’s representation theorem (general case) (1933)

Theorem. The sequence X(∞) = (Xn)n≥1 is exchangeable if and only if
there exists a probability measure on (PX,PX) such that

P [X1 ∈ A1, . . . ,Xn ∈ An] =

∫
PX

n∏
i=1

p(Ai) Q(dp)

for ay n ≥ 1 and A1, . . . ,An in X , where the probability Q is uniquely
determined.

/ (Xn)n≥1 is exchangeable if and only if there exists a random probability measure p̃
on (X,X ) such that p̃ ∼ Q and

P [X1 ∈ A1, . . . , ,Xn ∈ An | p̃ ] =
n∏

i=1

p̃(Ai)

for any n ≥ 1 and A1, . . . ,An in X .
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de Finetti’s representation theorem (general case) (1933) - continued

Q is a probability measure on PX −→ de Finetti measure of (Xn)n≥1

/ If (Xn)n≥1 is exchangeable, then its empirical distribution is such that

1
n

n∑
i=1

δXi ⇒ p̃ a.s.–P

where ⇒ denotes weak convergence.

Hierarchical representation: (Xn)n≥1 exchangeable is equivalent to

Xi | p̃ i.i.d.∼ p̃

p̃ ∼ Q

Q = prior distribution

The Bayesian nonparametric framework is equivalent to exchangeability of (Xn)n
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Parametric case through the representation theorem

Parametric model: Q degenerate on a finite–dimensional subset P∗
X of PX, such that

Q({P∗
X}) = Q({p ∈ PX : p = pθ, θ ∈ Θ}) = 1

and and there exists a function

θ̃ : P∗
X → Θ bijective.

Θ ⊂ Rp is called parametric space. The prior Q induces a probability on Θ:

π(B) = Q(θ̃−1(B)),B ∈ B(Θ).

In these cases:

Xi | θ̃ = θ
i.i.d.∼ pθ

θ̃ ∼ π prior distribution

For instance:

Q({p ∈ PX : p(dx) = φ((x − µ)/σ) dx, (µ, σ) ∈ R× R+}) = 1

with φ being the density function of a N(0, 1) distribution.
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Parametric vs Nonparametric case

When can we assume Q({P∗
X}) = 1, where P∗

X is finite-dimensional? More clearly,
when could we assume the model is parametric?

• if, from past experience in cases similar to the one analized, we believe that the
parametric family approximates well the “true” distribution

• if, in addition to exchangeability, we assume different conditions for the sequence
of observations. For example, if (Xn)n≥1 is also spherically symmetric
(L(X1, . . . ,Xn)

T = L(A(X1, . . . ,Xn)
T) for any orthogonal matrix A), then P∗

X is
the family of Gaussian distributions with 0-mean.

Otherwise: nonparametric model
−→ greater flexibility when Q has large support, possibly supp(Q) = PX.
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