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Abstract

Mixed Models (linear and non linear ) belongs to a class of models in
which some of the effects are fixed and some are random, formalization of
these models is easily achieved in a hierarchical Bayesian framework. Here
we propose a space-time mixed model to link rain measures and lightnings
counts in a given area of North-central Italy.

Keywords: lightnings; rainfall fields; space-time gaussian process; bayesian
geostatistics.

1 Introduction

In this paper we aim at formulating a model for predicting the 15-minutes cumu-
lated precipitation at unknown locations given lightnings counting. In particular,
we assume that the cumulated precipitation at time t in cell p of a 10x10 km
regular grid is generated by a fixed component related to lightnings and a ran-
dom W term structured in space and time. We refer to events during convective
storms. We use lightnings records in the fixed component of the model. The
study area is located in Central Italy, we analyze an event of 68 time units (May
9, 2006). The database is composed of lightnings records (instant-point fields)
cumulated over a grid with 10 × 10km cells and 179 rain gages. When two or
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more rain gages belong to the same grid cell we take their median over the cell
ending with 111 spatial measurements at each time point.
Data are affected by several problems, on one hand a very large number of zero
values is recorded, on the other hand the rain gages precision (about 0.2mm)
implies an almost discrete measurement of cumulated rain as shown in Table 1.

[0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1) ≥ 1
9328 861 353 258 199 1173

λ0 = log(0.1) λ1 = log(0.3) λ2 = log(0.5) λ3 = log(0.7) λ4 = log(0.9)

Table 1: Frequency distribution of observed values and discretization of the
latent rainfall field.

2 The model

Let X(t, p) be the latent rainfall field at cell p and time t. Lt,p denotes the
number of lightnings in cell p at time t. Given the partially discrete nature of
the dataset, following [6] and [5], we discretize the latent process X(t, p) below
1mm assuming that there exists five values λi, i = 0, . . . , 4 described in Table
1, that occurs with positive probability whenever X(t, p) belongs to one of the
interval reported in the same table.
Let Y (t, p) be the latent rainfall field on the log scale. Y (t, p) is modeled as the
sum of a fixed effect and a space-time random effect W :

y(t, p) = µ(t, p) + w(t, p) + ε(t, p) (1)

where µ(t, p) is as in Eq. 2, w(t, p) is the (t, p) element of W a separable space-
time random field such that w(t, p) = T (t) + S(p) with T (t) = αT (t− 1) + η(t),
η(t) ∼ N(0, σ2η) and

S ∼MN(0, σ2s(I− ρsC)−1)

where I is the identity matrix and C an adjacency matrix describing the spa-
tial neighborhood structure. ε(t, p) ∼ N(0, τ2) are independent, identically dis-
tributed random variables.
The fixed component of the model relates precipitations and lightnings start-
ing from the well known Tapia-Smith-Dixon relation [7]. More precisely, we
assume that the number of lightnings in cell p depends on the number of light-
nings occurring in neighbouring cells. We adopt a queen neighbouring structure

[2] and ωi,p =
Li,p
Lp

+ 1
8 ∗

Li,Np

Lp
are the corresponding spatial weights where

Li,Np =
∑

Ps∈Np
Li,Ps and Lp =

∑T
i=1

(
Li,p + Li,Np

)
. Moreover, we assume that

the number of lightnings at time t is a function of storms propagation speed
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V with two different parameterizations depending on the stage of the event.
In fact, the life of lightnings’ pattern inside a rainfall convective event is com-
posed of 3 stages: Charging phase (C), Mature state (M) and Dissipating phase
(D). Consequently, the event duration interval can be partitioned into [t0, TC),
[TC , TM ) and [TM , T ]. Thus, the fixed effect can be described as follows:

µ(t, p) = log

(
C ∗

T∑
i=1

Li,p ∗

(
exp

{
− (a+ bV )

A
1/2
p

|t− Ti|2
}
I[TC ,T ](t)

+ exp

{
− (a+ bV )

A
1/2
p

|t− Ti|
}
I[0,TC ](t)

)
+ C ∗

T∑
i=1

ωi,p

)
(2)

where C is a mass-to-volume conversion factor which is linked to the rainfall
lightning ratio [7], I[ã,b̃](·) is the indicator function of the time interval [ã, b̃] and
Ap is the area of a single cell. Here, t is a general time point and Ti is the
observed time.

Priors specification complete the model. The model is implemented in JAGS
[4]. First results are encouraging.
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