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Abstract

The problem of transformation selection is thoroughly treated from a
Bayesian perspective. Several families of transformations are considered
with a view to achieving normality: the Box-Cox, the Modulus, Yeo &
Johnson and the Dual transformation. Markov Chain Monte Carlo algo-
rithms have been constructed in order to sample from the posterior distri-
bution of the transformation parameter λT associated with each competing
family T . We investigate different approaches to constructing compatible
prior distributions for λT over alternative transformation families, using the
power-prior and the unit-information prior approaches. In order to distin-
guish between different transformation families, posterior model probabili-
ties have been calculated. Using simulated datasets, we show the usefulness
of our approach.

Keywords: Bayesian transformation selection; MCMC; Power-prior;
Prior compatibility.

1 Introduction

In the literature, the term transformation selection so far pertains to the choice
of an optimal value for the transformation parameter within a given family. We
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introduce a two-step approach where a transformation family is selected at an
initial level while at a second level the value of the transformation parameter is
specified given the family. Working within the Bayesian context requires careful
choice of prior distributions. In our case, this becomes even more complex since
the prior distribution for the transformation parameter λT under each family T

need to be compatible to account for the different interpretation of λT given T .

2 Bayesian formulation

Four uniparametric families of transformations are considered and compared
with each other: Box-Cox [1], Modulus [4], Yeo & Johnson [6] and Dual [5].

Each family is indexed by T and involves a transformation parameter λT . Let

us denote by y = (y1, . . . , yn)
T the observed data and by y(λT ) = (y

(λT )
1 , . . . , y

(λT )
n )T

the transformed data for a given value of the parameter λT within a particu-
lar transformation family T . We aim for y(λT ) to be a sample from a Normal
distribution N(µT , σ

2
T ) with unknown parameter vector

(

µT , σ
2
T

)

under some
appropriate value of λT .

Table 1: Posterior model probabilities and log-marginal likelihood values for each trasfor-
mation family T along with Monte Carlo estimates for the posterior median (sd) of λT ,
all estimated using Chib’s approximation method for the Student simulated dataset.

Prior1 Modulus Box-Cox Dual Id YJ Log

n = 100

P (T |y)
Prior A 0.99 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Prior B 0.99 0.01 < 0.01 < 0.01 < 0.01 < 0.01

log f(y|T )
Prior A -250.59 -255.89 -256.39 -258.28 -259.36 -292.14

Prior B -251.92 -257.01 -259.77 -258.28 -260.48 -292.14

λT

Prior A 0.36 (0.15) 1.60 (0.22) 1.62 (0.22) - 1.08 (0.08) -

Prior B 0.34 (0.15) 1.62 (0.23) 1.63 (0.21) - 1.09 (0.08) -

Prior Modulus Box-Cox Dual YJ Id Log

n = 1000

P (T |y)
Prior A 1.00 0.00 0.00 0.00 0.00 0.00

Prior B 1.00 0.00 0.00 0.00 0.00 0.00

log f(y|T )
Prior A -3733.00 -3960.67 -3961.52 -4027.56 -4125.02 -4601.98

Prior B -3732.75 -3960.92 -3963.83 -4027.63 -4125.02 -4601.98

λT

Prior A -0.01 (0.04) 2.93 (0.12) 2.93 (0.12) 1.23 (0.01) - -

Prior B -0.01 (0.04) 2.94 (0.12) 2.94 (0.12) 1.23 (0.01) - -

1 Prior A: Unit-information Normal prior; Prior B: Power-prior.

Regarding the prior probability of each of the six transformation families
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(including the identical and the log transformation), no special prior weight is
assigned to any family, i.e. f(T ) = 1

|T | =
1
6 . As to the prior on the transforma-

tion parameters, it has a hierarchical form: f(θT |T ) = f(µT , σ
2

T |λT , T )f(λT |T ). The
main parameter of interest within a family is λT while (µT , σ

2
T ) are regarded as

nuisance parameters; therefore we employ an independent Jeffreys prior (refer-
ence prior) for those.

On the grounds of the different interpretation of λT among families, the
concept of the power-prior [3] is adopted in order to construct compatible prior
distributions. The power-prior for λT is formed as the posterior distribution of
a set of imaginary data y∗ under a reference baseline prior π0(λT |T ) ∝ 1:

π (λT |y
∗, T ) =

(

f (y∗|λT , T )
1/n∗

∫

f (y∗|λT , T )
1/n∗

dλT

)

. (1)

In addition, a unit-information Normal prior setting is used, based on the same
imaginary data y∗, which theoretically approximates the former power-prior
setting. The variance of the latter prior is determined through the observed
Fisher information of y∗. Approximations of the intractable integrals included
in the process are achieved through Chib’s estimator [2] incorporating the output
of a random-walk Metropolis-Hastings algorithm simulating from the marginal
posterior distribution of λT .

3 Results

In order to illustrate our approach, we have simulated data from a variety of dis-
tributions. The Student distribution t2, having non-centrality parameter equal
to −1, is an example of particular interest since symmetry is accompanied by
fat tails. The latter characteristic usually induces failure of transformation to
normality under most families. Looking at the figures in Table 1, we observe
that the supremacy of the Modulus family for this distribution is unquestion-
able for both medium and large sample sizes (n = 100 & n = 1000) under both
power-prior and unit-information Normal prior.

4 Conclusions

The compatibility issues in transformation selection have been addressed through
the power prior approach. By and large, there is more than adequate conver-
gence of results under both prior settings. The fat tailed Student distribution is
optimally associated to the Modulus transformation. The latter result has been
verified for other fat tailed distributions such as the Laplace.
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