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Abstract

Single-arm two-stage designs are commonly used in phase II of clinical
trials. However, the use of randomization in phase II trials is currently
increasing. We propose a randomized version of a Bayesian two-stage design
due to Tan and Machin [2]. The idea is to select the two-stage sample sizes
by ensuring a large posterior probability that the true response rate of
the experimental treatment exceeds that of the standard agent, assuming
that the experimental treatment is actually more effective. This optimistic
assumption is realized by fixing virtual outcomes.

Keywords: Bayesian approach; phase II clinical trials; randomization;
two-stage design.

1 Introduction

Phase II trials are typically conducted as single-arm studies based on a binary
endpoint, where the patients are recruited in two stages to let the trial stop if
the observed response rate is unacceptably low. In this context the most popular
two-stage designs developed under a frequentist framework are due to Simon [1].

Among the Bayesian two-stage designs proposed in the literature, we in par-
ticular focus on the Single Threshold Design (STD) presented by Tan and Machin
[2].

Let us denote by pX the unknown response probability of an experimental
treatment and define the treatment promising if pX exceeds a target of clinical
interest, p∗. The STD selects the two-stage sample sizes by ensuring a large
posterior probability that pX > p∗, under the assumption that the observed

1



response rate is slightly larger than the target. The results are strongly affected
by the choice of p∗, that is typically defined a priori from historical data on the
expected efficacy of the best available treatment.

The use of historical response rates is one of the main criticisms moved to
single-arm studies and the introduction of randomization in phase II of clinical
trials is widely debated in the recent literature [3, 4].

A general scheme to conduct a randomized two-stage design is provided by
Jung [5]. Let X and Y be the experimental and the standard arm, respectively.
At the first stage, n1 patients are enrolled in each arm. Let us denote by x1 and
y1 the observed number of responders for X and Y, respectively. If x1−y1 ≥ a1,
where a1 ∈ [−n1, n1], the trial continues to the second stage, otherwise it stops.
At the second stage we accrue n2 additional patients to each arm and observe
the number of responders, x and y, out of the total of n = n1+n2 patients. Then
if x− y ≥ a, where a ∈ [a1 − n2, n], we proceed to phase III; otherwise the trial
terminates. In particular, Jung [5] suggests to select the values (n1, a1, n, a)
by minimizing either the maximum sample size or the expected sample size
under the null hypothesis of no treatment difference, subject to pre-specified
restrictions on Type I and Type II error probabilities. These proposals represent
randomized versions of the single-arm “minimax” and “optimal” designs due to
Simon [1].

2 A Bayesian two-stage design

To avoid the use of a historical control, we propose a randomized version of the
STD. Let pY be the efficacy probability of the standard therapy. The criterion
we suggest to select n1 and n is based on the control of the posterior probability
that pX > pY , under the assumption that the observed response rate for the
standard treatment is equal to the target p∗, while the one for the experimental
treatment is equal to the target plus a small quantity ε > 0.

More formally, let us denote by Pr(pX > pY |X1 = x1, Y1 = y1) and Pr(pX >

pY |X = x, Y = y) the posterior probabilities that pX > pY at the end of the
first and the second stage, respectively. We select the smallest sample size n1,
such that

Pr(pX > pY |X1 = n1(p
∗ + ε), Y1 = n1p

∗) ≥ λ1, (1)

where λ1 ∈ (0, 1) is a pre-specified threshold. Since the data arise from a bino-
mial distribution, we introduce independent beta prior densities for the param-
eters, i.e. π(pj) = Beta(αj , βj), for j = X,Y , where

αj = n0

jp
0

j + 1 and βj = n0

j(1− p0j) + 1.

With this choice of the hyperparameters, the beta prior π(pj), for j = X,Y , has
mode at p0j and is based on an implicit prior sample size, n0

j , such that the larger
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its value, the more concentrated is the prior distribution (see Sambucini [6]). As
it is well known, the corresponding independent posterior densities for pX and
pY are still beta with updated parameters. Then, the posterior probability in (1)
can be easily computed using, for instance, Monte Carlo simulation techniques.

Analogously, at the second stage we choose the smallest n that satisfies

Pr(pX > pY |X = n(p∗ + ε), Y = np∗) ≥ λ2, (2)

for a suitable λ2 ∈ (0, 1). Once the optimal sample sizes have been determined
and the trial started, following Tan and Machin [2], at the end of each stage
we compute the posterior probability of interest corresponding to the observed
outcome and check whether it exceeds the pre-specified threshold (λ1 or λ2), in
order to make a go/no-go decision.

Finally, it is important to point out that statistical considerations about
the irrelevance of stopping rules in Bayesian inference let us conclude that the
posterior probability in (2) is not affected by the first stage results.

Moreover the behaviour of Pr(pX > pY |X1 = n1(p
∗ + ε), Y1 = n1p

∗) as a
function of n1 is the same as that of Pr(pX > pY |X = n(p∗ + ε), Y = np∗) as a
function of n and we need to set λ2 > λ1 in order to obtain n > n1. Then, since
the posterior distributions involved in both the criteria (1) and (2) are actually
the same, in the following we will use the first stage notation in describing the
numerical results related to both the stage.

3 Numerical results

The proposed design has been implemented and applied to some reasonable
prior scenarios. Table 1 provides the optimal sample sizes for different values
of p∗ and λ1, when ε = 0.05 and we consider informative prior distributions
that express skepticism or enthusiasm about the efficacy of the experimental
treatment. In particular we obtain a skeptical prior by specifying the prior
modes pX

0
= p∗−0.05 and pY

0
= p∗+0.05, while an enthusiastic prior is obtained

by setting pX
0

= p∗ + 0.05 and pY
0

= p∗ − 0.05. Different values of the prior
sample sizes are also considered, in order to take into account different levels of
skepticism or enthusiasm expressed by the prior densities. As expected, larger
values of λ1 determine higher values for the optimal sample size. We can also
note that, when we adopt skeptical prior densities about the effectiveness of the
new treatment, we need larger sample sizes with respect to those obtained when
we use enthusiastic priors. Of course, the differences are more relevant as we
increase the values of n0

X and n0

Y .
Figure 1 represents the behaviour of the optimal sample size as a function of ε,

when p∗ = 0.3 and λ1 = 0.75, under the skeptical and the enthusiastic scenarios
considered in Table 1 for n0

X = n0

Y = 5 (see left panel) and n0

X = n0

Y = 15 (see
right panel). The case of non-informative priors is also considered by setting
n0

X = n0

Y = 0, so that π(pj) = Beta(1, 1), for j = X,Y . As ε increases, the fixed
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virtual results used in the criteria (1) and (2) express a larger level of optimism
about the efficacy of the experimental treatment and the design requires smaller
sample sizes.

Moreover, since the larger the prior sample size the higher the weight as-
signed to the prior opinions, the difference in the optimal sample sizes under the
skeptical and the enthusiastic scenarios are more evident in the right panel of
Figure 1.

Table 1: Optimal sample sizes for different values of the prior sample sizes, p∗

and λ1, when ε = 0.05 and we elicit skeptical and enthusiastic prior distributions.

n0

X = n0

Y = 1 n0

X = n0

Y = 5 n0

X = n0

Y = 10

λ1 λ1 λ1

p∗ prior 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8

0.2 skeptical 15 45 106 28 61 124 42 79 144
enthusiastic 8 38 98 1 25 86 1 6 69

0.3 skeptical 17 55 131 31 72 149 46 90 170
enthusiastic 10 47 123 1 35 111 1 17 95

0.4 skeptical 18 60 145 32 77 163 47 96 185
enthusiastic 11 52 137 1 40 125 1 23 109

Prior modes of skeptical prior distributions: pX0 = p
∗

− 0.05 and p
Y

0 = p
∗ + 0.05

Prior modes of enthusiastic prior distributions: pX0 = p
∗ + 0.05 and p

Y

0 = p
∗

− 0.05
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Figure 1: Optimal sample size as a function of ε, when λ1 = 0.75 and p∗ = 0.3,
using skeptical, enthusiastic and non-informative prior distributions.
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