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Abstract

Using Bayesian adaptive shrinkage in the form of the Normal-Gamma
prior we show that causal DNA sequence variants associated with a change
in gene expression can be successfully detected. Taking a fully Bayesian
approach allows our model to be developed to include uncertainty in gene
expression and SNP calls, and to include biological information from online
databases.

Bayesian shrinkage; SNPs; linear model; sequencing

1 Introduction

Next-Generation exome sequencing identifies thousands of DNA sequence vari-
ants in each individual. Methods are needed that can effectively identify which
of these variants are associated with changes in gene expression, a measure of the
activity of the gene. As we expect only a few SNPs (single DNA base changes)
to be causal, i.e. to cause disease, we need methods that induce sparse models.
The Normal-Gamma prior has been shown to induce adaptive shrinkage within
the Bayesian linear model framework (large effects are shrunk proportionally
less than small effects) [1]. Using simulated data we assess the efficacy and
limitations of this Bayesian shrinkage method in comparison to other published
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methods in parsimoniously identifying such sequence variants. The model is
then validated using publicly available human and yeast datasets. We further
develop the model to include the uncertainty in gene expression; SNP functional
information (information on the known biological effect of the single point mu-
tation) obtained from online databases; and the uncertainty in the DNA base
calls.

2 Modelling Using the Normal-Gamma Prior.

The Normal-Gamma hierarchical prior [1] is given by:

π(βi|ψi) ∼ N(0, ψi)

π(ψi|λ, γ) ∼ Ga

(
λ,

1

2γ2

)

which has var (β|λ, γ) = 2λγ2 which we assign an IG(2,M) prior. Consider the
standard linear model

yij =

pj∑
k=1

βjkxijk + εij ,

where i, j, k represent individual, gene and SNP respectively, and pj represents
the number of SNPs in the model for gene j. βjk is the effect size of the kth SNP
in gene j.

2.1 Including Uncertainty in Gene Expression (y).

To account for the uncertainty in gene expression (y) we use a more complex
error structure. We propose to decompose the error variance into Σ + σ2Ω that
includes the weighted technical variance of the gene expression due to differences
in non-biological aspects of the gene expression (σ2Ω) and a covariance matrix
of errors (Σ). We define

π(Σ) ∼ Inv −Wishart

π(σ2) ∝ 1

Ω = diag(technical variance),

where the technical gene expression variance can be obtained from PUMA [2].
This variance decomposition estimates the variability due to technical effects and
to other sources, e.g environmental, epigenetic (changes affecting gene expression
that are not related to changes in the DNA) etc.
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2.2 Including Uncertainty in SNP calls (X).

Exome sequence base calls have associated Phred-based quality scores (Q) which

are a function of the base calling error probability (P ), where P = 10
−Q
10 (high

Q means high certainty in allele call). This probability is used in a Bernoulli
sampler (0 represents wildtype, 1 represents SNP) to “update the matrix of SNPs
at each iteration of the MCMC. This modification should improve detection of
causal SNPs with poor quality scores that might otherwise be discarded if a
quality score threshold is applied.

2.3 Including Functional Annotation Information (F).

Functional annotation information is increasingly widely available in online data-
bases. Novel SNPs, SNPs that have not previously been found and recorded,
are not annotated and the only information obtainable is whether the SNP is
synonymous, have no change on the protein they code for, or non-synonymous,
cause a change in the protein they code for. By combining a given set of biological
parameters on annotated SNPs into one score [3], we can obtain a distribution
of scores (ω) independently for synonymous and non-synonymous SNPs. We
can use these empirical distributions to inform our hierarchical prior for β, thus
enforcing more shrinkage on parameter estimates of a priori less important SNPs
with respect to association with disease.

3 Preliminary Results.

Figure 1 includes the weights (W ) of confounding factors (Z) such as age, gender,
population structure etc. To avoid having to incorporate confounding in our
model, we use PANAMA [4] to deconfound the gene expression signal (y).

In the initial simulation study 8 causal β (ranging from 2 to 0.4 in magni-
tude) are fixed and non-causal β are simulated to have an effect sampled from a
N(0, 0.01) with gene expression a linear sum of the weighted SNPs plus a N(0, 1)
error.

In comparison with the least squares estimates, see Figure 1, the Normal-
Gamma [1] prior detects all truly causal SNPs at a lower false positive rate.
This is due to comparatively less differential shrinkage across all βjk. Compar-
ing with the HyperLasso [5] which enforces similar shrinkage, and piMASS [6]
which uses Bayesian selection, the Normal-Gamma model has similar perfor-
mance (Figure 1).

4 Conclusion

Our developments to the Normal-Gamma prior provide a suitable framework,
that has been shown via simulation, to successfully identify causal DNA sequence
variants (SNPs) affecting the gene expression level. Taking a fully Bayesian
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Figure 1: TOP: A graphical model of the relationships between the parame-
ters in our extended Normal-Gamma model. BOTTOM: ROC curves generated
from the Least Squares, Normal-Gamma [1], piMASS [6], and HyperLasso [5] on
simulated data.
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approach, permitted by the Normal-Gamma prior, allows for the various sources
of uncertainty to be incorporated in a coherent manner.
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