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Abstract

The concentrations of various chemicals, particles and gasses in ice-
cores hold a continuous record of climatic and environmental information
dating back hundreds of thousands of years. In order to interpret these
data we must first learn about their underlying, unobserved time scale. We
present a fully Bayesian univariate approach to obtain a marginal posterior
distribution for the time of year, as well as the date, at each depth.

Markov chain Monte Carlo; time-axis uncertainty

1 Introduction

Environmental signals are measured from ice-cores either by cutting them into
sections – indexed by depth – and analysing the melt-water to provide a piecewise
average or via Continuous Flow Analysis (CFA), see [1]. Some high resolution
signals, those with multiple measurements per year, have annual cycles which
show as quasi-periodic seasonality in the depth series. Layer-counting uses this
periodicity to count back in time, year by year, and is currently achieved by eye,
at considerable effort, see [1]. Using a simple, flexible model for one such signal
we use a Markov chain Monte Carlo approach to reconstruct the underlying
periodic process. The latent chronology is sampled directly in a way that allows
the number of cycles in the reconstruction to be changed without the need
for dimension-changing algorithms such as Reversible Jump. We allow for the
dependence in observation error and the lack of stationarity by modelling means,
amplitudes and errors as continuous functions of depth.
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2 The Model

The signal is modelled as:

xi = αi sin(2πτi) + βi

where τi is the latent time-scale of interest at depth i ∈ (1, 2, . . . , n). The
reconstruction of the signal is described by the parameters: θ = {τ ,α,β}.
Figure 1 shows the model fit to a short stretch of ammonium signal, around 11
cycles, from the NGRIP ice-core (Greenland) [2], measured at 1mm intervals
via CFA. The reconstruction is shown as a dotted black line where the data is
missing, otherwise it matches exactly to the signal.
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Figure 1: Posterior mean reconstruction of the NGRIP ammonium signal. (top)
the mean reconstruction, with β as a dotted blue line and β±α as a dotted red
line. (bottom) sin(2πτ ).

2.1 Priors

The elapsed times over each depth increment are independently Gamma dis-
tributed with shape ψ and rate λ,

τi − τi−1 ∼ G(ψ, λ),

α and β model the amplitude and mean level of the signal, these are intended
to be slow-moving processes and their prior takes the form of two independent
Gaussian random walks, for i ∈ (2, 3, . . . , n):

αi ∼ N(αi−1, σ
2
α) and βi ∼ N(βi−1, σ

2
β).
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3 Implementation

θ is updated in intervals, I = {i | s < i < f}, chosen uniformly at random. The
reconstruction within I is updated conditionally on that outside of I.

3.1 Maintaining cycle count

The conditional distribution of α in I given α outside of I is

αI | α−I ∼ N(µα,Σα),

where

µα,j = αs +
j(αf − αs)

m+ 1
, j ∈ (1, 2, . . . ,m),

and

Σα,jk = σ2α

(

min(j, k) −
jk

m+ 1

)

, j, k ∈ (1, 2, . . . ,m),

I containing m data points. Similarly for βI . The signal in I is

xI = SαI + βI ,

where S is a matrix containing sin(2πτ I) along the diagonal. Thus

xI | τ I ,α−I ,β−I ∼ N(Sµα + µβ, SΣαS
T +Σβ).

τ ′

I is proposed from its prior, conditioned on τ−I , by sampling u – m + 1
perturbations from a Dirichlet distribution with constant shape ψ – and setting

τ ′I,j = τs + (τf − τs)

j
∑

k=1

uk, j ∈ (1, 2, . . . ,m).

This proposal has acceptance probability

p(xI |τ
′

I ,α−I ,β−I)

p(xI |τ I ,α−I ,β−I)
.

If τ ′

I is accepted, S is set to S′, and (SαI)
′ is drawn from

SαI | xI , τ
′

I ,α−I ,β−I ∼ N(µSα,ΣSα),

where
µSα = Sµα + SΣαS

T (SΣαS
T +Σβ)

−1(xI − Sµα − µβ)

and
ΣSα = SΣαS

T − SΣαS
T (SΣαS

T +Σβ)
−1SΣαS

T .

Then α′ is set to S−1(SαI)
′, and β′

I to xI − (SαI)
′.

3



3.2 Changing cycle count

To add a cycle into I the proposal, τ ′

I , is conditioned to run between τs and
τf + 1. This adds a term to the acceptance probability,

p(τ ′

I)q(τ I)

p(τ I)q(τ ′

I)
=

(∆ + 1)(m+1)(ψ−1)e−λ(∆+1)

∆(m+1)(ψ−1)e−λ∆

where ∆ = τf−τs, which compares ∆ and ∆+1 with respect to theG ((m+ 1)ψ, λ)
distribution. If this step is accepted, τ to the right of I are incremented by 1.
Cycles can be removed in a similar manner.

3.3 Hyper-parameters

σα and σβ are given uninformative inverse-gamma priors, and updated via Gibbs
steps. λ is given an uninformative Gamma prior, and updated via a Gibbs step.
ψ is updated via a Metropolis-Hastings step with a flat, improper, prior.

4 Conclusions

Our approach automates the layer-counting process, providing information about
the time of year, as well as the date, at each depth. The updates can be eas-
ily adapted for missing values – the reconstruction filling the gaps as seen in
figure 1. A different approach to this problem can be found in [3]; the method
presented here has the advantages that it is fully Bayesian and provides a more
detailed chronology.
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Röthlisberger, U. Ruth, M. L. Siggaard-Andersen, J. Peder Steffensen, D.
Dahl-Jensen, B. M. Vinther, and H. B. Clausen. The Greenland ice core

chronology 2005, 15 42 ka. Part 1: constructing the time scale.
Quaternary Sci. Rev.; 2006; 25; pp. 32463257.

[2] D. Dahl-Jensen, N. S. Gundestrup, H. Miller, O. Watanabe, S. J. Johnsen,
J. P. Steffensen, H. B. Clausen, A. Svensson, and L. B. Larsen.The North-

GRIP deep drilling programme. Ann. Glaciol.; 2002; 35; pp. 1-4.

[3] J. J. Wheatley, P. G. Blackwell, N. J. Abram, J. R. McConnell, E. R.
Thomas, and E. W. Wolff. Automated ice-core layer-counting with

strong univariate signals. Climate of the Past ; 2012; 8; pp. 1869-1879.

4


