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Abstract

In many areas of application it is important to estimate unknown model
parameters in order to model precisely the underlying dynamics of a phys-
ical system. In this context the Bayesian approach is a powerful tool to
combine observed data along with prior knowledge to gain a current (proba-
bilistic) understanding of unknown model parameters. We have applied the
methodology combining Bayesian inference with Sequential Monte Carlo
(SMC) to the problem of the atmospheric contaminant source localization.
The algorithm input data are the on-line arriving information about concen-
tration of given substance registered by the downwind distributed sensor’s
network. We have proposed the different version of the Hybrid SMC along
with Markov Chain Monte Carlo (MCMC) algorithms and examined its ef-
fectiveness to estimate the probabilistic distributions of atmospheric release
parameters.

Keywords: Bayesian inference, stochastic reconstruction, MCMC meth-
ods, SMC methods.

1 Introduction

Accidental atmospheric releases of hazardous material pose great risks to human
health and the environment. Examples, like Chernobyl nuclear power plant acci-
dent in 1986 in Ukraine, chemical plants producing, or storing dangerous mate-
rials (e.g. Seveso disaster in 1978) or transportation accidents (bromine release
on the train in Chelyabinsk in 2011), prove that it is necessary to have properly



fast response to such incidents. In this context it is valuable to develop the emer-
gency action support system, which based on the concentration measurement of
dangerous substance by the network of sensors, can identify probable location
and characteristics of the release source.

It is obvious that if we are able to create the model giving the same point concen-
tration of registered substance, as we get from the sensors’ network, we could say
that we understand the situation we face up. However, to create the model real-
istically reflecting the real situation based only on a sparse point-concentration
data is not trivial. This task requires specification of set of models’ parameters,
which depends on the applied dispersion model’s characteristics.

In general, the stated inverse problem for the dispersion of released materials
in the air is ill-posed. Given concentration measurements and knowledge of the
wind field and other atmospheric air parameters, finding the location of the
source and its parameters is ambiguous. This problem has no unique solution
and can be considered only in the probabilistic frameworks. In the case of gas
dispersion, the unknowns to be determined are the gas source distribution of
strengths and locations; given the measured gas concentrations at measurement
locations for the associated wind field and other weather data (e.g. weather
stability pattern). In fact, our aim is to find the source parameter’s distributions
that will generate predicted concentrations closest to those actually measured.

In this paper we present the developed stochastic dynamic data-driven event
reconstruction model which couples data and predictive models through Bayesian
inference to obtain a solution to the inverse problem i.e. based on the succes-
sively arriving information about concentration of given substance registered
by distributed sensor network find the most probable source location and its
strength.

2 Theoretical preliminaries

Bayes’ theorem, as applied to an emergency release problem, can be stated as
follows:
P(M|D) oc P(D|M)P(M) (1)

where M represents possible model configurations or parameters and D are
observed data. For our problem, Bayes’ theorem describes the conditional prob-
ability P(M|D) of certain source parameters (model configuration M) given
observed measurements of concentration at sensor locations (D). This condi-
tional probability P(M|D) is also known as the posterior distribution and is
related to the probability of the data conforming to a given model configuration
P(D|M), and to the possible model configurations P(M), before taking into
account the sensors’ measurements. The probability P(D|M), for fixed D, is
called the likelihood function, while P(M) is the prior distribution[1].

Value of likelihood for a sample is computed by running a forward dispersion
model with the given source parameters M. To achieve the rapid-response event



reconstructions and limit the computational time we have adopted the fast-
running Gaussian plume dispersion model [2] as the forward dispersion model.
The model predicted concentrations M in the points of sensors location are
compared with actual data D. The closer the predicted values are to the mea-
sured ones, the higher is the likelihood of the sampled source parameters. This
function is taken as:
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where A is the likelihood function, CZM are the predicted by the forward model
concentrations at the sensor locations 7, CZE are the sensor measurements, U?el is
the standard deviation of the combined forward model and measurement errors,
N is the number of sensors.

We use a sampling procedure with the Metropolis-Hastings algorithm to
obtain the posterior distribution P(M|D) of the source term parameters given
the concentration measurements at sensor locations. This way we completely
replace the Bayesian formulation with a stochastic sampling procedure to explore
the model parameters’ space and to obtain a probability distribution for the
source location [3, 4]. The scanned model’s parameters’ space is

MEM(CC,:U,C],Cl,CQ) (3)

where x and y are spatial location of the release, ¢ release rate and (y, (o are
stochastic terms in the turbulent diffusion parameters.
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Figure 1: Posterior distribution as inferred by the Bayesian event reconstruction
for all applied algorithms for x parameter. Vertical lines represent the target x
value.



3 Summary and Results

In this paper we examine the application of the Sequential Monte Carlo (SMC)
methods combined with the Bayesian inference to the problem of the localiza-
tion of the atmospheric contamination source. We present the possibility to
connect MCMC and SMC to provide additional benefit in the process of event
reconstruction. Based on the synthetic release experiment we have proposed
and tested various version of the Hybrid SMC with MCMC algorithms i.e. clas-
sic MCMC, MCMC prior to SMC, MCMC prior to SMC via Rejuvenation and
Extension, MCMC prior to SMC via Maximal Weights in effectiveness to esti-
mate the probabilistic distributions of searched parameters. We have shown the
advantage of the algorithms that in different ways use the source location pa-
rameters probability distributions obtained basing on available measurements to
update the marginal probability distribution. As the most effective we pointed
the modifications of MCMC prior to SMC (see Figure 1).
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