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Abstract

We are interested in Bayesian nonparametric Hidden Markov Models.
More precisely, we are going to prove the consistency of these models under
appropriate conditions on the prior distribution and when the number of
states of the Markov Chain is finite and known. Our approach is based on
exponential forgetting and usual Bayesian consistency techniques.
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1 Introduction

Hidden Markov Models are much used in practice as in econometrics, speech
recognition, genomics (see [2] for some applications)... Frequentist methods to
deal with hidden Markov chains are asymptotically understood [4] [3]. Con-
versely, asymptotic properties of Bayesian methods have not been much consid-
ered. The Bayesian parametric case has just been studied in [5] and [6]. While
Yau & al. empirically noticed in [7] that using a nonparametric model may
improve the estimations a lot, there is no asymptotic result in this case. In this
paper we will show the posterior consistency of nonparametric Bayesian hidden
Markov models under rather usual assumptions.

2 Hidden Markov models

Let S1, . . . , ST be a homogeneous Markov chain with a finite and known number
of states k, an initial probability ν and a kxk transition matrix Q.
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In hidden Markov models, we cannot access these previous Markov chain
states (they are hidden). But we observe Y1, . . . , YT which are the noisy signals
of the states of the chain. Given S1, . . . , ST ; Y1, . . . , YT are independent and Yt is
equal to a parameter mSt depending on the corresponding state St plus a noise
εt. We assume that ε1, . . . , εT are iid, distributed according to a probability F
and independent of the Markov chain.

Figure 1: The model

The parameters of this model are ν, Q, m = (m1, . . . ,mk) and F . We assume
that F has a density f with respect to a reference measure λ. Let θ = (ν,Q,m, f)
and pTθ be the associated joint density of Y1, . . . YT with respect to λ.

As usual in Bayesian statistics, we put a prior µ on the parameters. Then we
take a ”frequentist point of view” by wondering if the posterior asymptotically
puts the mass on the neighborhood of the true density. In other words, we study
the posterior consistency.

3 Consistency

Consistency is the first thing we may ask for an estimator. Here we will work
with neighborhood with respect to the l1 distance between two joint densities.
For two parameters θ and θ′ the pseudo-metric between the two of them will be∫
|pθ(y1, . . . , yl)− pθ′(y1, . . . , yl)|λ(dy1) . . . λ(dyl).

Theorem 1 Under some assumptions on the set of parameters and the prior, if
the true parameter θ∗ = (ν∗, Q∗,m∗, f∗) is such that the associated Markov chain
mixes enough and the tail of f∗ is small enough then the posterior is consistent
with respect to the previously described pseudo-metric.

This result is proved using Barron method [4]. That is to say we have to prove
that the parameter set is not too big by proving the existence of the following
tests. For all neighborhood An of the true parameter these tests enable to
separate the true parameter from a set Cn such that the union of An and Cn
has a small prior measure. This task can be achieved by the construction made
in [5]. Secondly, we have to prove that the posterior puts enough mass in the
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Kullback-Leibler neighborhood of the true density. For this purpose, we need to
control a nasty Kullback-Leibler divergence by controlling the parameters. We
did it thanks to existing results on hidden Markov chains [3] and [4].

The assumptions on the set of parameters are usual. We mostly ask that
the Markov chain mixes enough. Notice that the construction of tests lead
us to ask for priors which do not put mass on transition matrix Q such that
Qi,j < q for a constant q > 0. The other assumptions on the prior consist on
usual nonparametric assumptions. These last assumptions are checked for some
Dirichlet mixtures on f .

4 Conclusion

Thanks to the previous results, we hope to identify the adaptive rate of conver-
gence associated to this model.
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