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Abstract

An improved method is sought to accurately quantify the number of
motor units that operate a working muscle. Measurements of a muscle’s
contractive potential are obtained by administering a sequence of electrical
stimuli, but non-deterministic firing patterns of the motor units impede
estimation. We consider a state-space model that assumes a fixed number
of motor units to describe the hidden processes within the body. Particle
learning is applied to estimate the marginal likelihood for a range of mod-
els that assumes a different number of motor units. Simulation studies of
systems containing up to 8 motor units are very promising.

Keywords: Bayesian Model Selection; Particle Learning; Motor Unit
Number Estimation.

1 Introduction

We are interested in accurately quantifying the number of Motor Units (MUs)
that supply a working muscle. A MU consists of a single motor neuron and the
muscle fibres it governs. An electrical study of a muscle provides insight into the
neuromuscular processes by measuring the Compound Muscle Action Potential
(CMAP) for a range of stimuli. The ability to partition each CMAP into the
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contributions from each MU, a Single Motor Unit Potential (SMUP), is central
to Motor Unit Number Estimation (MUNE). However, this is complicated by the
occurrence of ‘alternation’ [1], where different MU combinations activate under
identical conditions.

2 The Neuromuscular Model

We propose an adaptation to the state-space neuromuscular model [2] that de-
scribes the relationship between the applied stimulus, st for t = 1, . . . , T , and
the corresponding CMAP, yt, through the hidden biological processes. The state
variable is defined to be the firing index vector, kt = (k1,t, . . . , kj,t, . . . , ku,t)

′,
where each element describes a single MU’s reaction to the stimulus and the
length of this vector, u, denotes the assumed known quantity of MUs within the
system. The individual events are assumed to be independent Bernoulli ran-
dom variables with probability that depends on the administered stimulus via a
non-decreasing link function, F (·; ·), with parameters specific to the MU, φj :

kj,t|st,φj ∼ Bernoulli( F (st;φj) ) (1)

Each firing MU generates a SMUP that is assumed to be Gaussian with
a unique mean, µj, but a common variance, σ2. Denoting the mean vector
of SMUPs as µ = (µ1, . . . , µj, . . . , µu)

′, the recorded CMAP is the sum of the
generated SMUPs plus a Gaussian baseline measure that has its own mean, µb,
and variance, σ2

b . By using calibration data to approximate σ2

b , we assume that
σ2

b ≪ σ2 and define the observation process as follows:

yt|kt, µb, σ
2

b ,µ, σ
2 ∼ N(µb + k′

tµ, σ
2

b I{kt=0} + σ21′kt) (2)

3 Methodology

MUNE using the neuromuscular model is assessed by Bayesian model selection;
requiring reliable marginal likelihood estimates for a range of proposed model of
varying dimension. Consider the marginal predictive factorisation, where each
term expresses the probability for a CMAP given the currently available data:

P (y1:T |s1:T , u) = P (y1|s1, u)

T∏

t=2

P (yt|y1:t−1, s1:t, u) (3)

Estimates of these terms are obtainable from independent applications of
Particle Learning [3] to each considered model. This procedure is an extension
of the auxiliary particle filter that constructs the particle set with the ‘essential
state vector’ (ESV), containing the sufficient information necessary for the two
stage sequential procedure:
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1. Resample the particles with weights proportional to the marginal predic-
tive of yt with all unknown parameters and state variables marginalised.

2. Propagate the particles either deterministically or by generating appropri-
ate random samples.

The marginal predictive terms are thereby estimated by Monte Carlo integration
over the ESV within the procedure before the propagation stages.

4 Discussion

Data from 160 hypothetical neuromuscular systems that contain up to 8 MUs
have been simulated. In 139 cases our procedure correctly identified the true
number of MUs, according to the a posteriori most probable model, and a further
11 cases contained the true scenario within the 95% credible intervals. Figure
1 presents the posterior probabilities for the true model from which the data
was generated and it is evident that majority of the misestimation occurred for
larger problems. These occurrences are either a result of insufficient information
to accurately describe what is happening at the periods of alternation or the
difficulty to distinguish between a small SMUP and the noise produced by the
other firing MUs.
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Figure 1: Boxplots of the posterior probabilities for the true number of motor
units from which the data was generated.

Our aim is to adapt this procedure to analyse larger neuromuscular systems.
However, the event space for kt increases exponentially as larger models are
considered. Consequently, this substantially increases the computational com-
plexity due to of the need to marginalise all unknowns, parameters and states,
within the algorithmic procedure.
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