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Abstract

Complex models are becoming increasingly popular in ecological mod-
elling. However, quantifying uncertainty, estimating parameters and so on
for a model of this sort are complicated by the fact that their probabilistic
behaviour is often implicit in its rules or programs, rather than made ex-
plicit as in a more conventional statistical or stochastic model.

In a complex stochastic model, the output is dependent on both the pa-
rameters and the random inputs i.e. the random numbers used to resolve
decisions or generate stochastic quantities within the model. By treating
these random inputs as nuisance parameters, often we can turn the model
into a deterministic model where small movements in the parameter space
result result in small changes in the model output. When this is the case
it will allow us to use Approximate Bayesian Computation methods with
MCMC in order to perform parameter estimation. Controlling the random
inputs allows us to move better in the parameter space and improves the
mixing of the Markov Chain.

We will use these methods to estimate parameters in an individual-based
model which is used to model the population dynamics of a group-living
bird, the woodhoopoe.
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hood; Complex Models; Individual based models.
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1 Introduction

In ecology the need for answering the question “what makes something hap-
pen?” as opposed to “what actually happens?” is becoming increasingly popular.
These questions lead to building complex models where the different aspects of
the system are modelled separately and give rise to the collective behaviour of
the system. A natural approach in ecology is to model each individual separately
in the system. These are called individual-based models (IBMs) [2].

IBMs generally model behaviour through a series of rules or algorithms,
rather than describing it in a formal mathematical way. They are developed
with algorithms that are not well tuned from the beginning but require parame-
ters that are either not precise enough in the literature, or simply not concretely
measurable [3]. As the probabilistic behaviour of the model is implicit in the
rules of the model, the likelihood is generally intractable.

Using Pattern Orientated Methods [4], parameter values can be found in-
directly by changing a number of parameters at once and seeing if the model
output matches some observed data [6][7]. As IBMs have many parameters that
can have complex and interacting effects on the output, this approach may be
unproductive [1] so other methods of parameter estimation are required.

Current methods for performing parameter estimation for a model of this
kind involve tuning the parameters and trying to match the model output to
observed patterns. A range of potential parameter values are proposed and then
tested by dividing the potential parameter space up and seeing if the the output
matches the observed data.

A more probabilistic version of this is ABC. In ABC parameter values are
proposed from a distribution, usually the prior, and the model is run using these
parameters. If the model output is similar to the realized data then that param-
eter is accepted. This is continued until n parameter values have been accepted.
Although this is more probabilistic it can be computationally very inefficient if
the prior is not very informative.

We propose a method of examining the model by controlling the random
inputs in the model which will allow us to turn the stochastic model into a
deterministic one. We use this method, coupled with Approximate Bayesian
Computation (ABC) methods, to perform parameter estimates on these types
of models.
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2 Controlling random inputs

Given a stochastic model M with input parameters θ and output

X ∼M(·|θ), (1)

X is drawn from a random distribution. However if we condition on the parts
that cause the stochasticity, the random inputs u, then

X ∼M(·|θ,u) (2)

will be deterministic.

By controlling the random inputs we aim to ensure that small changes in the
parameters result in small changes in the model output. However, depending
on how the inputs are used, a change in a parameter may cause a submodel
to require a different number of random inputs to what it required before that
could result in a large change in the output.

For example consider a model where only the annual numbers of births and
the weights at birth are generated. Let parameter θ control the number of births
and ui, (i = 1, 2, . . .) be the sequence of random inputs. Suppose when θ = α,
using u1 there is only one birth. The weight of the birth is determined by u2.
The next time the number of births will be determined using u3. Now suppose
that when θ = α + ε, where ε is small, using u1 there may now be two births
whose weights involve u2 and u3. The next time the number of births will be
determined using u4. This causes all of the random inputs to be out of sequence
which could result in a large change in the output. This change in output is
caused by the change in sequence of random inputs not the parameter θ.

One way to get round this is to control all of the inputs individually so
that each submodel will have its own sequence of inputs and then the inputs
for each submodel will remain the same regardless to what happened in earlier
submodels.

3 Woodhoopoe model

Woodhoopoes are birds that can be found in sub-Saharan Africa [4]. They live
in groups just like wolves, with one dominant pair which are the only ones that
breed. Neuert et al. [5] used an Individual-based model in order to model the
population and group dynamics of the woodhoopoes which was simplified by
Railsback and Grimm [4] for use as examples in their recent book.

In the model individual woodhoopoes live in groups with one dominant male
and one dominant female. Each woodhoopoe’s aim is to become a dominant
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animal in one of the groups. Each month, each woodhoopoe dies with a proba-
bility of θ1. When a dominant dies the eldest subordinate, if there is any, will
become the dominant animal. Younger subordinates will leave their group in
order to try and become a dominant in another group with probability θ2 but
if they leave the safety of the group they become more vulnerable to predators
and have a predication mortality probability of θ3.

4 Summary of the talk

In the talk we will introduce this method of controlling the random inputs,
show a few examples of how to do it on toy models and then, along with ABC
methods, use it to perform parameter estimation on Railsback and Grimm’s [4]
woodhoopoe model.
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pureus (Gemeiner Baumhopf) in Südafrika? Ein individuen-
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