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Abstract

We propose a Bayesian procedure to test monotonicity of a regression
function in a Bayesian setting where the Bayes Factor approach yield poor
results. We propose a Bayesian procedure that is consistent and achieves
the optimal separation rate. Furthermore, our testing procedure is straight-
forward to implement which is a great advantages compare to the frequen-
tist tests.

Keywords: Bayesian nonparametric; Asymptotic properties of tests;
Nonparametric testing

1 Introduction

Shape constrained models are of growing interest in the non parametric field.
Among them monotone constrains are very popular and have been widely stud-
ied in the literature as such hypotheses arise naturally in many applications.
[Barlow et al., 1972] and [Mukerjee, 1988] among others proposed a shape con-
strain estimator of monotonic regression functions. These methods are widely
applied in practice. For instance [Bornkamp and Ickstadt, 2009] consider mono-
tone function when modeling the response to a drug as a function of the dose
and [Neittaanmäki et al., 2008] use a monotone representation for environmental
data.

In this paper we propose a Bayesian procedure to test for monotonicity con-
strains. We consider the Gaussian regression setting

Yi = f(i/n) + σεi, εi
iid∼ N (0, 1) , σ > 0, i = 1, . . . , n, (1)

and want to test
H0 : f ↘ versus H1 : f is not ↘ . (2)
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Note that in this setting both the null and the alternative hypotheses are non
parametric. For this test, it appears that the Bayes Factor, which is the standard
Bayesian approach to testing, lead to poor results. To tackle this issue we
consider an alternative approach and test

Ha
0 : d̃(f,F) ≤Mn versus Ha

1 : d̃(f,F) > τ (3)

where d̃(f,F) is a distance between f and the set of monotone non increas-
ing function F and τ a threshold, which can be calibrated a priori given some
knowledge on how far from monotonicity is still acceptable as approximately
monotone. However, such a knowledge may not be available, we thus propose
an automatic calibration of τ such that our test has good asymptotic proper-
ties. This ideas is similar to the one proposed in [Rousseau, 2007] and to the
approximation of a point null hypothesis by a interval hypothesis testing, see
also [Verdinelli and Wasserman, 1998]. To perform such a test we consider the
γ0 − γ1 loss with fixed γ0, γ1 > 0 and thus our procedure can be define as

δπn :=

{
0 if π

(
d̃(f,F) ≤ τn|Xn

)
≥ γ0

γ0+γ1

1 otherwise
(4)

This test is straightforward to implement and will only require sampling under
the posterior.

2 Main results

Similarly to the frequentist test, we consider α-Hölderian alternatives with α ≤ 1.
Under some mild conditions on the prior that do not depend on the regularity
α under the alternative, we get an explicit threshold τ such that our testing
procedure defined in (4) satisfies

sup
f∈F

Enf (δπn) = o(1)

sup
f,dn(f,F)>ρ,f∈H(α,L)

Enf (1− δπn) = o(1)
(5)

furthermore, if ρn(α) = M (n/ log(n))−α/(2α+1) then (5) is still valid with ρ =
ρn(α). Thus our procedure is consistent and has the optimal adaptive separation
rate.
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