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Abstract

We propose an approximate Bayesian approach to estimate the joint
distribution of the response variable Y and the set of covariates X based
on the notion of quantile distribution. We focus on cases where the quantile
regression framework is necessary, but the unknown form of the regression
function and the large number of quantiles suggests to directly estimate
the conditional distribution. In these cases the use of very flexibly-shaped
distributions may be of interest. In this context we adopt the multivariate
g-and-h distribution, a member of the quantile distribution family. Due
to the lack of the likelihood function in a closed and manageable form,
the estimation proceed via an Approximate Bayesian Computation (ABC)
algorithm that allows us to easily estimate all the parameters. The perfor-
mance of the proposed approach is evaluated via simulated data sets.
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Quantile Distribution; Quantile Regression.

1 Summary

The usual assumptions of the standard linear model imply that the conditional
distribution of the response variable is, at least approximately, Gaussian. In
practice, this assumption is rarely acceptable. In many observational studies,
the conditional distribution is not symmetric and, even worse, its shape depends
on the value of the covariates (Yu et al. (2003)). For these situations, methods
based on quantile regression are common alternatives (Koenker (2005)). Never-
theless when influence concerns more than one quantile, it may be convenient
to consider the problem of directly estimating the conditional distribution of
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the response variable given the explanatory variables (Peracchi (2002)). In this
context quantile distributions, due to their flexibility and the small number of
parameters, may represent a valid choice. Field & Genton (2006) have proposed
a generalization of the univariate g-and-h distribution to the multivariate case.
We exploit the use of the multivariate g-and-h distribution for the estimation
of the joint distribution of the response variable Y given a vector of covariates
X = (X1, . . . , XK).
A drawback of quantile distributions, which has represented an obstacle to their
use, is the lack of a closed form expression of the likelihood function. On the
other hand, the problem of generating random values from them is an easy task.
These issues, suggest the estimation via the Approximate Bayesian Computa-
tion (ABC) approach (Allingham et al. (2009), Tavaré et al. (1997)).
ABC allows to produce a sample from an approximate version of the posterior
distribution. No likelihood evaluation is required, only a way to sample from
the model distribution.
Briefly, we assume data, D, arise from the multivariate g-and-h distribution:

W = Σ1/2Rg,h(Z) + µ

where:
- µ ∈ RK+1 is the location
- Σ is the variance covariance matrix
- g = (g1, g2, . . . , gK+1) ∈ RK+1 controls the skewness
- h = (h1, h2, . . . , hK+1) ∈ R+

K+1 controls the kurtosis
- Z ∼ NK+1(0, I)
- Rg,h(Z) = (Rg1,h1(Z1), Rg2,h2(Z2), . . . , RgK+1,hK+1

(ZK+1))
T ,

with Rg,h(z) =
(
exp(gz)−1

g

)
exp

(
hz2

2

)
.

In order to estimate all the parameters in the model we propose the following
ABC-MCMC algorithm:

1. Being at θt, propose a move to θ′ according to a Normal transition kernel
q(θt → θ′)

2. Generate M samples, D′1, . . . ,D′M , from the model with parameters θ′

3. Calculate α = min

(
1,

1
M

∑M
m=1Kε(ρ(S(D),S(D′

m)))π(θ′)q(θ′→θt)
1
M

∑M
m=1Kε(ρ(S(D),S(D′

m;t)))π(θt)q(θt→θ′)

)
4. Accept θ′ with probability α, otherwise stay at θt

5. Update the variance of q(·) through an Adaptive MCMC scheme; then
return to 1.

Specifically, S(·) is a multivariate quantile (Chaudhuri (1996)), ρ(·) the Eu-
clidean norm, and Kε(·) a Multivariate Gaussian kernel centered on S(D′) =
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S(D) with variances ε’s.
The performance of the proposed method is evaluate with simulated datasets.
Secondly we apply our approach to estimate the joint distribution of price and
demand in the Italian Day-Ahead electricity market.
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