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Abstract

In this paper Bayesian networks are used to predict complex semicon-
ductor lifetime data. The data of interest is a mixture of two log-normal
distributed heteroscedastic components where data is right censored.

To understand the complex behavior of data corresponding to each mix-
ture component, interactions between geometric designs, material proper-
ties and physical parameters of the semiconductor device under test are
modeled by a Bayesian network. For the network’s structure and parameter
learning the statistical toolboxes BNT and bayesf Version 2.0 for MATLAB
have been extended. Due to censored observations MCMC simulations are
necessary to determine the posterior density distribution and evaluate the
network’s structure.

For the model selection and evaluation goodness of fit criteria such as
marginal likelihoods, Bayes factors, predictive density distributions and
sums of squared errors are used.

The results indicate that the application of Bayesian networks to semi-
conductor data provides useful information about the behavior of devices
as well as a reliable alternative to currently applied methods.

Keywords: Semiconductor Reliability; Lifetime Prediction; Bayesian
Networks; Bayesian Inference.
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1 Introduction

In automotive industry, end-of-life tests are necessary to verify that semicon-
ductor products operate reliable. To save resources, accelerated stress tests [6]
in combination with statistical models are commonly applied to predict the life-
time measured in cycles to failure (CTF). Previous investigations [1], [10] have
shown that the currently applied Bayesian Mixtures-of-Experts extended Coffin-
Manson (MoE) model is sufficient for interpolation. In case of extrapolation, it
cannot describe the complex behavior of the data and lead to inaccurate results.
It is assumed that this lack of accuracy may be based on the fact that the model
does not include physical parameters reflecting interactions between different
geometric designs or material properties of the device under test (DUT) [10].
Hence, a Bayesian network including these factors is proposed.

2 Data Characteristics & Available Information

For this paper lifetime data obtained under different electrical and thermal stress
conditions from a cycle stress test system [6] is investigated.

The stress test conditions are thereby defined by current (I ), pulse length
(tp), repetition time (trep) and the device-specific voltage (V ). Additionally, pa-
rameters considering the geometric design of the device, e.g. current density
(J ), are available. The main reasons for the failing of the devices are electro-
thermal and thermo-mechanical effects caused by repetitive stress. To capture
these effects, temperature simulations as well as thermal and mechanical stress
parameters [3], [13] are included. Altogether 18 covariates for the Bayesian net-
work are available.

Since lifetime data is a mixture of two log-normal distributed components
representing two different failure mechanisms [2], the dataset is divided into
two subsets. For the model 169 and 867 datapoints for the first and second
component, respectively, tested under 65 different stress conditions are used.
Both components include censored data.

3 Model Development & Evaluation Results

For modeling lifetime data, Bayesian networks (BN) [7], [8], [12] are used. The
nodes were assigned to be either discrete or continuous. To define the condi-
tional probability distributions (CPDs), root and gaussian nodes are applied [9].

Different approaches using the automatic relevance determination (ARD) al-
gorithm [11], see Figure 1, and priors on edges are investigated, because it is
assumed that the number of data is too small for such a large network. The
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Figure 1: ARD selected covariates for each component. The application of
different covariates for different components is proposed.

marginal likelihood is approximated with the method proposed by Draper [4].
The largest marginal likelihood value indicates the best BN for the first and
second component, which is then used for lifetime modeling.

Bayesian structure and parameter learning is performed in MATLAB us-
ing an enhance version of the BNT [9] and extended MoE toolbox [1], [5] with
MCMC methods. For the simulation of the posterior density distribution of the
parameters normal and inverse-Gamma priors are applied.

For an evaluation, cross-validation using posterior predictive distributions
and sum of squared errors of predictions (SSEPs) are compared. Furthermore,
predicted outcomes are compared with the results gained by the currently ap-
plied MoE model. Since the MoE model was developed based on a subset of data,
the same subset is used to learn the BNs and thus, to provide a direct compari-
son between the predictive power of the two different approaches. Predicting the
lifetime with BNs, the posterior predictive distribution for each component is
sampled independently and mixed by estimated mixture weights. It was shown
[10] that the mixture weights can be modeled by a cumulative Beta distribution
function.

Since it is infeasible to determine SSEPs for tests with no fails, they are
neglected for this evaluation. Thus, the number of tests is reduced to 51. Table
1 shows the meanSSEP for the five evaluated device types. Overall, the MoE
model achieves a meanSSEP of 2.76, whereas the BN model gives a meanSSEP
of 2.88. The MoE model is slightly more accurate for two device types (B and
C) and significantly more accurate for device type D. The BN gives significantly
better results for device types A and E. Overall, the results of the MoE and BN
model are comparable.
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model Device A Device B Device C Device D Device E

# tests 33 3 5 4 6

MoE 6.08 3.88 0.89 2.44 0.52

BN 3.83 4.12 0.96 5.26 0.22

Table 1: meanSSEP.

4 Summary

In this paper different BN have been proposed to model mixture distributed
semiconductor lifetime data and to provide a reliable alternative to currently
applied methods.

For the model 18 covariates were available and the network’s structure was
supposed to be too complex for the amount of data. Therefore, the model com-
plexity had to be reduced. This was achieved by the ARD algorithm, which
provided plausible results. Furthermore, prior knowledge for edges was available
which was additionally used for the structure learning.

Based on the selected network, the posterior distributions of the model pa-
rameters were simulated. The posterior densities of the model parameters show
small variations and indicate therefore a good fit.

Since the aim of this work was to provide reliable predictions, cross-validation
using posterior predictive distributions has been performed and evaluated. The
results show that the application of a BN represents a reliable alternative to
currently applied methods.
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