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Abstract

Bayesian regression models with spatio-temporally varying coefficients
are gaining popularity among researchers who are looking to model the
spatio-temporal processes that are ubiquitous in the environmental and
physical sciences. The fitting of these highly overparameterised and non-
stationary models is challenging and computationally expensive.

Typically, the coefficients are given a Gaussian process prior, and, with
the assumption of a normal likelihood, can be marginalised over to reduce
the dimension of the parameter space. By considering different parameter-
isations of the model we obtain numerous marginalisation schemes, each of
which define a new fitting method.

We use the MCMC output to compare the fitting methods in terms of
convergence rates and effective sample sizes per second, and thus identify
the most efficient fitting strategy for models of this type.

Implementation of the optimal strategy achieves faster convergence rates
and significant savings in computation time, illustrated here with a simu-
lation example and also a real data example modelling daily ozone concen-
tration data.

Keywords: Bayesian estimation; spatio-temporal modelling; parame-
terisation; marginalisation.

1 Introduction

Given that large data sets are now prevalent in many areas of statistics, it is
important to efficiently implement any Markov Chain Monte Carlo (MCMC)
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algorithm. It has long been understood that the parameterisation of a hierar-
chical model affects the performance of the MCMC method used for inference.
In particular, high posterior correlations between model parameters can lead to
poor mixing and slow convergence. Papaspiliopoulos, Roberts and Sköld [1] de-
velop a framework for the parameterisation of hierarchical models, applied to a
wide range of statistical contexts. They focus on two parameterisations, namely
centred and non-centred, terms introduced by Gelfand, Sahu and Carlin [2].

In this paper we aim to develop the most efficient way to fit a non-linear,
stochastic process-based model to spatio-temporal data. Motivated by, but not
restricted to, modelling ground-level ozone concentrations, we look at a class
of models sometimes referred to as downscaler models. A downscaler model
regresses the observed point referenced data upon a covariate, or set of covariates,
given as averages over gridded cells, see [3] for details. In our application the
covariate is the output from a numerical model.

To respect the non-linearity of the surface that we are attempting to model,
we allow the intercept and slope to be site specific. This is done by intro-
ducing locally varying adjustments to the coefficients that are realisations of
Gaussian processes. Consequently we have a different model at every point in
the spatial domain. The inclusion of spatially varying coefficients introduces
non-stationarity into the model. By extending the model to allow for data col-
lected over time we further increase the computational burden. These highly
overparameterised models are very challenging to fit as is using them to produce
forecast maps, which is the target for spatio-temporal modelling of air pollution.

2 Model Specifications

Suppose that the data has been transformed such that we can assume normality
of the errors. Let Z(s, t) denote the suitably transformed observed ozone con-
centration at site s and time t, (t = 1, . . . , T ), and let x(s, t) be the similarly
transformed numerical model output for the grid cell containing site s. Consider
the following spatio-temporal model in it’s non-centred form:

Z(si, t) = β0 + w(si, t) + {β1 + β1(si, t)}x(si, t) + ǫ(si, t), (1)

for i=1,. . . ,n, t=1,. . . ,T, where ǫ(si, t)
ind
∼ N(0, σ2

ǫ ).
Under this parameterisation we interpret β0 as the fixed intercept and β1

as the fixed regression coefficient. These are locally perturbed by w(si, t) and
β1(si, t) respectively, which are both modelled as zero mean Gaussian processes
with separable covariance structure, given by:

Cov{w(si, tk), w(sj , tl)} = σ2
wρs(|si − sj|;φw(s))ρt(|tk − tl|;φw(t)),

and

Cov{β1(si, tk), β1(sj, tl)} = σ2
βρs(|si − sj|;φβ(s))ρt(|tk − tl|;φβ(t)),
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where ρs and ρt are valid isotropic covariance functions from the Matérn fam-
ily. The vectors w and β contain the nT realisations of w(s, t) and β1(s, t)
respectively such that:

w = (w(s1, 1), . . . , w(sn, T ))
′ ∼ N(0,Σw),

β = (β1(s1, 1), . . . , β1(sn, T ))
′ ∼ N(0,Σβ).

The φ parameters control the rates of decay of the spatial and temporal cor-
relation between the random effects. Each of these are given a uniform prior.
Variance parameters σ2

ǫ , σ
2
w and σ2

β are modelled on their inverse scales and are
given gamma priors. Mean parameters β0 and β1 are given vague normal priors.

We denote the vector of length nT containing the numerical model out-
put for the grid cells containing sites s1, . . . , sn, at times t = 1, . . . , T by
x = (x(s1, 1), . . . , x(sn, T ))

′ and let X = diag(x). Then we can write the
likelihood for model (1) as:

Z ∼ N(β01+w + β1x+Xβ,Σ), (2)

where Σ = σ2
ǫ I, with I representing the nT ×nT identity matrix. Given that w

and β are given Gaussian priors, we can integrate them out of the full likelihood
(2). Marginalising over w gives:

Z ∼ N(β01+ β1x+Xβ,Σ+Σw), (3)

and achieves a reduction in the dimension of the parameter space of nT . Like-
wise, marginalising over β gives:

Z ∼ N(β01+w + β1x,Σ+XΣβX
′). (4)

Marginalising over both w and β reduces the the dimension of the parameter
space by 2nT , and gives:

Z ∼ N(β01+ β1x,Σ+Σw +XΣβX
′). (5)

Re-writing model (1) in it’s centred form we get

Z(si, t) = w(si, t)+β1(si, t)x(si, t)+ ǫ(si, t), i = 1, . . . , n, t = 1, . . . , T, (6)

but now w(si, t) has mean β0 and β(si, t) has mean β1. For the centred param-
terisation we get a full likelihood of:

Z ∼ N(w +Xβ,Σ), (7)

Marginalising over w gives:

Z ∼ N(β01+Xβ,Σ+Σw), (8)
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and over β gives:
Z ∼ N(w + β1x,Σ +XΣβX

′). (9)

Finally, marginalising over both w and β gives:

Z ∼ N(β0 + β1x,Σ+Σw +XΣβX
′), (10)

which is the same as likelihood (5).
Likelihoods (2)-(5) and (7)-(9) label seven ways of fitting the same model.

Each parameterisation-marginalisation pair yields different full conditional dis-
tributions for the model parameters. In this paper we discuss the implications for
convergence and effective sample size per second of the fitting method employed.
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