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1 Introduction

In this paper we present a preliminary analysis of the evolution of a chronicle
heart disease [section 2] considering as variables of interest the sequence of hos-
pitalizations of patients affected by this illness and times of these events [1].
In particular we introduce a model [section 3] with the scope of evaluating fac-
tors that are relevant in the evolution of the sequence of hospitalizations and in
the time of registration of these events.

2 Presentation of dataset

The dataset contains informations about hospitalizations of patients affected by
chronic heart disease. In particular for each patient j = 1, . . . G we consider
the sequence of hospitalizations and the period occurred between subsequent
events. The analysis is carried out on G = 26.618 patients examined from
1/1/2006 to 31/12/2010. For each of them we know the number nj of events Aji
(hospitalization or death) occurred and the sequence of times observed between
subsequent events (say T ji the time between Aji−1 and Aji ). We are also informed
about covariates that possibly influence the occurrence of events: i.e. clinical
covariates like status (0 healthy, 1 not), age and sex (1 female, 0 male).
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3 Presentation of the model

To describe the model we assume patients to be independent. Further specifica-
tions necessary to fit the model are the following:

h1 : Each patient has at least one hospitalization Aj1 = 1

h2 : Following events can be hospitalization or death Aji = i or Aji = M with
i ∈ {2, . . . , nj}

h3 : The event Aji depends on all the previous times, but only on the last event

h4 : The time T ji depends on all the previous times and on the last event only,

i.e. T ji is independent from Ajk ∀k < i− 1

h5 : If a patient is not dead before the end of the analysis we can define time
T jnj+1 as the time of the first event occurred after the end of the study.

Observation: For the preliminary analysis we considerer only patients expe-
riencing at most N = 10 hospitalizations, in order to guarantee datas include
enough information for all events so that all parameters can be inferred.

Then we can define the likelihood of the model:
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Now, defining specifically each term, we have:

• (T j1 |ρ) ∼ Weibull(λ1, µ
j
1) being µj1 = ez

T
j γ and zj = (1, agej , sexj) ; γ =

(γ0, γ1, γ2)

• L(Aj2|T
j
1 = t1, T

j
2 = t2, A

j
1 = 1, ρ) =

{
p2 if Aj2 = 2

1− p2 if Aj2 = M

We assume the probability p2 = p2(t1, t2) ∼ Beta(α2(t1, t2)q2(t1, t2), α2(t1, t2)(1−
q2(t1, t2))) and we define α2(t1, t2) = a

t1 t2
and q2(t1, t2) = q2
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• (T j2 |T
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where µj2 = eβ
T xj2 and xj2 = (1, agej , sexj , covj2, t1), β = (β0, β1, β2, β3, β4)

Note that the definition of the parameter β4 is ancillary to introduce into
the law of T j2 the explicit dependence on the past.

• L(Aj3|T
j
1 = t1, T

j
2 = t2, T

j
3 = t3, A

j
2 = 2, ρ) =

{
p3 if Aj3 = 3

1− p3 if Aj3 = M

where p3 = p3(t1, t2, t3) ∼ Beta(α3(t1, t2, t3)q3(t1, t2, t3), α3(t1, t2, t3)(1 −
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According to the meaning of each state Aji we consider only Aj2 = 2; if

Aj2 = M the event Aj3 will not occur. Infact for each patient j we know
the total number of events nj .
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To complete the definition of the model we introduce the prior distribution of
parameters, in particular we have:

π(ρ) = π(β)π(γ)π(λ)π(a)π(q)

where: π(β) =
∏4
k=0 π(βk) βk ∼ N(0, 1000) ∀k ∈ {0, 1, . . . , 4}

π(γ) =
∏2
k=0 π(γk) γk ∼ N(0, 1000) ∀k ∈ {0, 1, 2}

π(λ) =
∏N−2
k=1 π(λk) λk ∼ Gamma(η, ν) and η = 10, ν = 5; ∀k ∈ {1, 2, . . . , N − 1}

and λN = λN−1 = λN−2
π(a) = Gamma(2, 4)
π(q) =

∏N−2
k=2 π(qk) qk ∼ U(0, 1), ∀k ∈ {2, 3, . . . , N − 1} and qN = qN−1 =

qN−2

4 Analysis of results

In this section we present the analysis of results obtained with a Gibbs Sampling
algorithm runned over 100.000 iterations with thinning of 10 iterations discarding
1000 iterations for burn-in (model implemented with JAGS [2]; [3]).

Concernig the distribution of time, chains connected to parameters β, γ and
λ converge well and are consistent with different initialization of parameters. In
figure 1 we present the chain connected to parameter β1. All the parameters
introduced before have similar posterior results.
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Figure 1: Analysis of β1

Therefore we can consider numerical values of the parameters and we observe
that the shape parameters of the Weibull distribution have values around 1.
Regression parameters can also be explained, in particular coefficients connected
to age have values around 0 and (after specific test of validation of the model)
we can conclude that the explicit influence of age is negligible; about sex and
clinical situation we observe that women and unhealthy patients have shorter
time for new hospitalization. We conclude also that the longer is the time from
the first hospitalization, the longer the time to a new event would be.

mean SD 2.5% 25% 50% 75% 97.5%

β0 -35.10 27.67 -89.91 -53.98 -34. 88 -16.12 19.04

β1 -1.15 0.40 -1.91 -1.42 -1.15 -0.88 -0.36

β2 -21.82 13.06 -47.34 -30.66 -21.85 -13.02 3.50

β3 -16.14 4.03 -27.06 -18.83 -16.17 -13.39 -8.27

β4 67.55 7.18 53.70 62.73 67.53 72.32 81.87

mean SD 2.5% 25% 50% 75% 97.5%

γ0 -15.62 27.97 -70.00 -34.88 -15.45 3.06 39.89

γ1 -1.08 0.42 -1.89 -1.36 -1.08 -0.80 -0.26

γ2 -3.20 17.87 -38.06 -15.40 -3.29 9.02 31.85

Considering, instead, the law of the sequence of events we observe that neither
the chain of a nor the chains of qi converge well, so we can not infer anything
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about the sequence of events; we should introduce a new definition of the law of
Aji |ρ, for example without the explicit dependence on time.

5 Conclusion

As introduced before we can observe that the model presented analyzes well the
evolution of time and defines well the relevant parameters. Considering, instead,
the sequence of events we should change the model, for example we can introduce
the explicit prior knowledge on the number of event ( pi is decreasing in i ) and
ignore the connection of p to time t.

These could be ideas for future developments of the model that should be
detailed in further analysis.
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