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Abstract

In this paper we concisely summarize some recent findings that can be
found in [5]. We propose a simple but yet powerful method to construct
strictly stationary Markovian models with given but arbitrary invariant
distributions. The idea is based on a Poisson transform modulating the
dependence structure in the model. An appealing feature of our approach
is that we are able to fully control the underlying transition probabilities
and therefore incorporate them within standard estimation methods. We
analyze some specific cases in both discrete and continuous time, and in
particular focus on models with invariant distributions belonging to the
gamma family or well-known transformations of it. Given the represen-
tation of the transition density, a Gibbs sampler algorithm, based on the
slice method, is proposed and implemented. The resulting methodology is
of particular interest for the estimation of certain continuous time models,
such as diffusion processes.
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1 Markovian Model

In this paper we sketch results that are extensively presented and proved in
[5] about the construction of Poisson driven stationary Markovian models. In
particular, stationary processes represent the crucial component in several mod-
eling approaches used in probability and statistics, given quite simple estimation
and prediction procedures. It is worth noticing that if it is possible to relax the
distributional assumptions of the stationary distribution, then many of the draw-
backs of stationary models are substantially reduced. When thinking of random
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phenomena evolving in time a natural starting point is to consider Markovian
processes and thus look for transition mechanisms that retain a particular in-
variant distribution over time. This is the approach followed by many of the
constructions available in the literature, in both discrete and continuous time.
Many of the available approaches start from a stochastic equation describing the
dynamics in time. Unfortunately, the availability of analytic expressions for the
corresponding transition probabilities is not always immediate. However, a full
control of the transition probabilities driving a Markovian process is desirable,
especially for considerable advantages in estimation and prediction procedures.

In [11] the reversibility property characterizing Gibbs sampler Markov chains
is exploited to propose strictly stationary AR(1)-type models with virtually any
choice of marginal distribution. In particular, they demonstrate that the ap-
proach by [4] can be seen as a particular case. Being such a general approach,
concrete choices of dependence should be made to accommodate specific model-
ing needs. Indeed, specific instances of this construction, meeting some specific
dependency or some distributional flexibility, can be found in [6], [7, 8, 9] and
[3]. Of particular interest is the approach to continuous time Markovian models
studied in [10].

In this work we construct stationary Markovian models using a Poisson trans-
form. Although our proposal results in a particular dependence structure, this is
general enough and allows to construct models with prescribed invariant distri-
butions supported on R+, which after simple transformations can be extended
to processes with other state-spaces.

2 Poisson weighted density

Let f a continuous density function supported on R+. For any y ∈ {0, 1, 2, . . .}
and φ > 0, we define the Poisson weighted density as

f̂(x; y, φ) :=
xye−xφf(x)

ξ(y, φ)
where ξ(y, φ) :=

∫
R+

zye−zφf(z)dz (1)

Notice that (1) constitutes a well defined probability density on R+, provided
the above integral exists. For φ ↓ 0, it reduces to the size-biased density of f
and, when y = 0, it reduces to the Esscher transform of f . Density (1) can also
be seen as the posterior density of a Poisson Po(φx) distribution with prior f on
x. For constructing a stationary Markovian process, (Xn)n∈Z+ , with invariant
distribution having density f we can use the Poisson weighted density, defining
the time-homogeneous one-step ahead Markovian density

p(xn−1, xn) :=

∞∑
y=0

f̂(xn; y, φ)Po(y;xn−1φ)

= exp{−φ(xn + xn−1)}f(xn)
∞∑
y=0

(xnxn−1φ)y

y!ξ(y, φ)
(2)
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which clearly satisfies p(xn−1, xn)f(xn−1) = p(xn, xn−1)f(xn) for all xn−1, xn ∈
R+ leading to a time-reversible Markovian process.

After the description of the general construction based on a Poisson trans-
form, we explore some particular cases of interest including constructions of
diffusion models with gamma, generalized inverse gaussian and generalized ex-
treme value marginal distributions.

2.1 Estimation

The availability of a tractable expression for the transition density is appealing
in Markov processes analysis and estimation. In particular if the choice of f
leads to a manageable analytic expression in (2), the maximum likelihood esti-
mator (MLE) can be easily determined. Alternatively, if analytically perform
the summation is forbidden in (2), one could make use of such a representation
for the transition density and obtain a MLE via the expectation-maximization
(EM) algorithm based on the augmented likelihood or a Gibbs sampler algo-
rithm for Bayesian estimation. Some illustrations based on simulated and real
data sets are also presented in [5].
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