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4 Departamento de Teoŕıa de la Señal y Comunicaciones, Universidad Carlos III de

Madrid, Leganés, Spain

jmiguez@ieee.org

Abstract

A Rao-Blackwellized particle filter for estimating the behavioral param-
eter of the functional response and tracking the biomass of each population
in a stochastic predator-prey system is presented in this paper. We consider
a predator-prey model with a Lotka-Volterra functional response and small
sets of field data. A first validation of the approach has been carried out
using synthetic data.

Keywords: Prey-predator system; parameter estimation; population
tracking; particle filtering.

1 Introduction

Successful establishment of biological control strategies is difficult because the
current abundance of pest population and properties of the predator functional
response, i.e., the per capita rate of predation, should be known, but this infor-
mation is not always available. Moreover, the decision on time and amount of
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predator released has to be taken into the dynamical framework of predator-prey
interaction.

In this paper, we propose a method for the joint estimation of the dynamical
biomass of each population and the feeding rate during the time evolution of
population interactions.

2 Method

2.1 State-space model

We consider the nonlinear state-space model, obtained by the Euler discretiza-
tion of a stochastic Lotka-Volterra type of model based on [1],

xk+1 = xk + τ [rxk(1− xk)− q0xkyk]− σxkyt∆w
(1)
k+1 + εxk∆w

(2)
k+1,

yk+1 = yk + τ [cq0xkyk − uyk] + cσxkyk∆w
(1)
k+1 + ηyk∆w

(3)
k+1,

oxk+1 ∼ Γ(xk+1, d
2
x),

o
y
k+1 ∼ Γ(yk+1, d

2
y),

(1)

where xk+1 and yk+1 are the biomass of prey and predator, respectively, at time
k+1 per habitat unit normalized with respect to the prey carrying capacity per
habitat unit (plant), oxk+1 and o

y
k+1 are noisy biomass observations defined as

Gamma variables with mean equal to xk+1 and yk+1 and variance equal to d2x
and d2y, respectively, τ is the time step used in the Euler approximation, and
k = 0, 1, ..., S denotes the discrete time instants. The parameters r, c and u are
species-specific and have been estimated in [1]. The increments of the Wiener

processes, ∆w
(1)
k+1, ∆w

(2)
k+1 and ∆w

(3)
k+1 are independent Gaussian variables with

zero mean and variance τ , and the parameters σ, ε, and η have been estimated
in [1].

Assume that the parameter q0 in the functional response q0xtyt is unknown
and the goal is the joint estimation of this behavioral parameter and the biomass
variables, xk+1 and yk+1.

2.2 Rao-Blackwellized particle filter

We apply a practical particle filter (PF) to approximate the sequence of poste-
rior probability distributions of the biomass of each population with unknown
parameter q0 given the observations. The proposed algorithm is an example of
a Rao-Blackwellized particle filter (RBPF) [2, 3]. Conditional on the sequences
x0:k and y0:k, the estimation of q0 is solved numerically using a simple Kalman
filtering algorithm [4, 5]. The RBPF handles a set of M particles in the 2-
dimensional space of the prey and predator biomass and a bank of M Kalman
filters running in parallel.

This particle filter method is adapted to small observation datasets, updat-
ing importance weights and resampling the particle set only when experimental
observations become available.
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3 Experimental results

3.1 Dataset simulation

We consider the acarine predator-prey system studied in [1], the prey mite
Tetranychus urticae and the predator mite Phytoseiulus persimilis. The pop-
ulation dynamics is described by Eq. (1) where all parameters are defined in [1]
and the behavioral parameter q0 is unknown.

In order to generate a synthetic dataset, we set q0 = 1.9, a time period
τ = 1 day, and a final time S = 69 days. Then we use the model in Eq. (1) to
generate sequences of normalized prey x1:S and predator y1:S population biomass
values. From these complete sequences, we generate eight noisy observations
with variance d2x = d2y = 10−4.

3.2 Validation of the RBPF algorithm

We apply the RBPF algorithm with M = 105 particles to jointly estimate the
unknown parameter q0 and track the prey and predator biomass given the avail-
able set of eight synthetic observations. All particles are initialized in the same
way, x0 = 0.1 and y0 = 0.01 are set, and a Gaussian distribution1 is assumed
for the prior density of q0 with zero mean and variance equal to one.

Figure 1 shows the online evaluation of the posterior mean of q0 generated
by the RBPF method. At the final time S = 69, the value of the posterior mean
converges to 1.946 and the posterior variance is 0.025.

For the same simulation, Figure 1 also displays the true (synthetic) sequences
x0:S and y0:S together with the online biomass estimates. It can be seen that
the estimates are accurate at the times where observations are processed, but
there is a drift (the error increases) when data are not available, especially for
k < 40. We also see that for k ≥ 40 the estimates of q0 are more accurate, and
this also affects the accuracy of the biomass estimation.

4 Conclusions

Within the adaptive management framework in Integrated Pest Management
(IPM), the predator-prey model we propose can undergo changes leading to
improved predictive and explicative capabilities as more information becomes
available. Differently from MCMC methods, the PF method does not present
restriction on the dataset. In fact, it can be applied also during the period of data
collection without waiting up to the end of at least one cycle of the population
like in [1]. Compared to standard particle filters, the proposed method reduces

1The proposed methods demand that the prior of q0 be Gaussian for formal consistency.

However, even with the mean of q0 at k = 0 equal to zero, the inference algorithm performs

well; hence, we have chosen to use this prior to illustrate the robustness of the method.
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Figure 1: Estimates of the unknown parameter q0 over time and comparison of
the true synthetic biomass sequences (dash-dotted lines) and the online biomass
estimates (continuous lines) generated by the RBPF algorithm. The points for
which observations are available are displayed with stars.

both the dimension of the state space and the variance of the resulting estimates
[2, 3].

The use of the Lotka-Volterra model implies an unsaturated capability of
prey biomass intake for the predator. However, the intrinsic limitation in the
model is outpaced by the advantages offered by the availability of prompt and
progressively improved estimation of the predator functional response.

Finally, the experimental results confirm the goodness of the proposed method.
As future work, an application to collected field data will be considered.
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