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Abstract

In this paper, we develop an intuitive and flexible model-based frame-
work to make inference on totals of finite populations. Statistical inference
is based on the decomposition of the population total into sampled and
unsampled parts, disaggregating both of them into planned domains, as
well. Inference on the unsampled part is made using Bayesian nonparamet-
ric procedures within planned domains. An extension is developed to make
inference on totals on unplanned domains, where simultaneous inference on
the random composition of individuals across the partition induced by the
unplanned domains is produced. As it is shown, both approaches produce
consistent and coherent inferences.
Keywords: Finite population inference; Species-sampling models; Prior
elicitation; Planned and unplanned domains; Convolution of probability
distributions.
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1 Introduction

In this paper we address two inferential problems frequently appeared in fi-
nite population studies. In the first part, we develop a flexible model-based
framework to inference on totals of finite populations. It is assumed that the
characteristic to be observed in each individual is random and continuous. In
our formulation, we make use of an intuitive decomposition of the total into two
parts: sampled and unsampled. Prediction on the unsampled part is done using
Bayesian nonparametric procedures within planned domains; see, e.g. [1]. Our
development allows to make full inference on the population total through convo-
lution type distributions. It is worth to notice that the derived point estimates
resemble and encompass traditional stratified and post-stratified design-based
estimators; see, e.g. [13].

In the second part, we derive an extension to the previous formulation, in
order to make inference on disaggregations of the total induced by unplanned
domains. This is an open problem in finite population inference; see, e.g. [7]
and [9]. For that, we extend our scope of randomness in our formulation by
considering the random composition of the partition associated with the un-
planned domains. Inference then is made simultaneously on the partial totals
and composition of the unplanned domains, through a nested disaggregation of
the convolution distribution of the first formulation. Hence, inferences in both
formulations are consistent and coherent with each other.

Let us introduce some notations and assumptions. Let P be the population,
which is assumed to be divided into planned domains, {Ptj}. Here, t stands for
a time label and j stands for any other label of relevance. The combinations
of t and j define the planned domains. We make emphasis on defining two
dimensions on for the planned domains, as it is intended to produce time-series
statistics on t. It is also assumed that the number of individuals in each planned
domains, Ntj , is known.

Accordingly, the total of Pt can be decomposed as,

Tt =
∑
j

Ttj , (1)

where Ttj =
∑Ntj

l=1 Ytjl, with Ytjl being the characteristic of interest of the l-th
individual in Ptj . It is also assumed that Ytjl is unknown and random. An
additional assumption is that the Ttj ’s are mutually independent.

Additionally, let Stj stand for the sampled part of Ptj , and let S̃tj be its

associated unsampled part. Also, let NStj and N S̃tj be their corresponding com-
positions.
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2 Species sampling models

The model-based framework we develop is flexible in that the structural assump-
tions related to the form of the distribution attained to the Ptjl is being relaxed.
For that, we consider Bayesian nonparametric components; in particular, we
consider a random distribution function in the class of species-sampling models
(SSM); see [10]. SSMs is a flexible class of countable random distribution func-
tions that has received a lot of attention in the recent years; see, e.g. [2], [5]
and [6]. In our context, we assume that the Ytjl’s are conditionally i.i.d. given
Ftj , assuming that each Ftj belongs to the class of SSMs. Among some of their
most relevant properties, the marginalization property makes of SSMs the most
appealing alternative of random probability measures in our context.

2.1 Marginalization property

The marginalization property of SSMs has been used extensively as a simulation
devise in Bayesian nonparametric procedures. In a general setting, this prop-
erty guaranties that prediction becomes free of the infinite dimensional object
F , when relevant information is being incorporated. Hence, all the uncertainty
surrounding the auxiliary random variable F vanishes once we incorporate rele-
vant data. This property is highly relevant in our context, as we shall expose it
below. See, [5] and [6].

2.2 Prior elicitation

However, the specification of the function parameter G0 attained to SSMs is
highly relevant in our formulation. In order to choose a sensible distribution,
we have elicited it by means of comparing three alternative parametric distribu-
tions: Lognormal, Gamma and Weibull –other heavy-tailed distributions were
considered as well–. Such a comparison is made in terms of the predictive be-
haviour of the parametric alternatives, in the spirit of [3] and [4]. Hence, the
elicited distribution for each planned domain Ptj is the one that best describes
the data {y(t−1)jl}, which gathered on the previous period (t− 1).

3 Totals on planned domains

It is crucial to observe that the total of the population can be decomposed as the
sum of partial totals of each planned domain. Accordingly, it is straightforward
to derive the following estimates.
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3.1 Bayesian estimate of totals

Let Utj be the number of unique values of interest in Stj , i.e. {y∗tjk : k =
1, . . . , Utj}. Then the posterior estimate of Ttj can be written as

T̂tj =
∑
g∈Stj

ytjg +N S̃tj ·

Utj∑
k=1

(
ρk(mtj) · y∗tjk

)
+ φ(mtj) · µ̂tj0

 , (2)

with µ̂tj0 = EĜtj
{Ytjl|θ̂tj0} and S̃ being the complement of S. Point estimates

for aggregation of planned domains are naturally derived from (2). Here, (ρk)

and φ define twoo functions, such that
∑Utj

k=1 ρk(mtj) + φ(mtj) = 1.

3.2 Full posterior inference

Moreover, our approach allows to full posterior inferences on Ttj through N S̃tj-fold

convolution distribution induced by Ĝtj , the marginal predictive distribution of
Ytjl, i.e.

P(Ttj |Stj) = Ĝ
∗N S̃tj
tj

(
T S̃tj

)
, (3)

which is shifted at the sampled part of the total, TStj =
∑

g∈Stj ytjg, where

T S̃tj =
∑

l∈S̃tj Ytjl. Inference on any aggregation of planned domains are produced

through nested convolution procedures. Those predictive distributions are easily
handled through simulation techniques; see, e.g. [12].

4 Totals on unplanned domains

As with many other survey sampling studies, the information collected in the
questionnaire allows to ask interesting questions about further disaggregation of
the totals to be estimated. In the design-based argot, those disaggregations are
referred as unplanned domains.

A key consideration regarding unplanned domains is that no previous refer-
ence is known about their composition, and that composition is actually being
regarded as random, see [9]. However, by using the decomposition of totals we
worked before, it is possible to rewrite Ttj as the sum of partial totals on those
unplanned domains, as

Ttj = TD1
tj + . . .+ TDD

tj ,

where D = {D1, . . . ,DD} define a partition of the population in D unplanned
domains. Accordingly, the population total in domain Ptj can be decomposed
and estimated by parts.
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It is worth to notice that the relevant characteristic when working with un-
planned domains, is the composition of the population Ptj between the un-
planned domains, D. Particularly, the composition over the unsampled por-

tion, S̃tj . That composition is being denoted by N S̃∩Dtj = (N S̃∩D1
tj , . . . , N S̃∩DD

tj ).
Thus, inference on unplanned domains requires to extend our scope of uncer-
tainty to include the unknown composition of the population in our formulation.

4.1 Prior on the composition of unplanned domains

We think of the composition vector N S̃∩Dtj as a realization of a multinomial-

Dirichlet distribution, with parameters NStj (known) and α = (α1, . . . , αD),
such that αd > 0, for d = 1, . . . , D. The vector with the proportions between
D, denoted by pDtj , is treated as a latent variable. Hence, posterior inference
and predictions are analytically produced using the conjugacy property of the
multinomial-Dirichlet model.

As it has been described above, elicitation of the vector parameter α is done
using the information collected in the sample of the period (t−1) for the samples
sub-planned domain j.

4.2 Posterior estimates on unplanned domains

Posterior estimation of totals on unplanned domains is made in two steps. In

the first step, point estimates for the composition vector N S̃∩Dtj is produced as

integer part of NStmar · αd+NS∩Dd
tmar /(

∑D
i=1(αi+N

S∩Di
tmar )). Consequently, posterior

estimates of the composition of Ptj for each unplanned domain Dd is given by

N̂Dd
tj = NS∩Dd

tj +
̂
N S̃∩Dd

tj , where NS∩Dd
tj is the composition of the Dd in the

observed sample Stj .
Consistently with the above decomposition, point estimates of partial totals

TDd
tj ’s, are being produced as

T̂Dd
tj =

∑
g∈Stj∩Dd

ytjg +
̂
N S̃∩Dd

tj ·

Utj∑
k=1

(
ρk(mtj) · y∗tjk

)
+ φ(mtj) · µ̂tj0

 , (4)

with µ̂tj0 being defined as above.

4.3 Inference through a vector of convolutions

Full posterior inference requires to make inference on both vectors TDtj and NDtj
through out their joint predictive distribution,

P{TDtj ,NDtj |Stj} = P{TDtj |NDtj ,Stj} × P{NDtj |Stj}. (5)

On the one hand, P{NDtj |Stj} is completely determined by the predictive
distribution of the multinomial-Dirichlet conjugate model for the unsampled
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part of the composition, N S̃∩Dtj , described above. Thus, P{NDtj |Stj} is computed

by shifting the predictive distribution of N S̃∩Dtj at to the sampled part of the

composition, NS∩Dtj .

On the other hand, P{TDtj |NDtj ,Stj}, is being derived as a D-dimensional

vector of N S̃∩Dtj -fold convolutions,

P{T S̃∩Dtj |N S̃∩Dtj ,Stj} =

(
Ĝ∗

N S̃∩D1
tj (T S̃∩D1

tj ), . . . , Ĝ∗
N S̃∩DD

tj (T S̃∩DD
tj )

)
, (6)

shifted at the vector of sampled partial totals T S∩Dtj = (TS∩D1
tj , . . . , TS∩DD

tj ), and

T S̃∩Dd
tj =

∑N
S̃∩Dd
tj

l∈S̃tj
Ytjl.

As before, the predictive distribution of any aggregation across sampled
and unsampled parts is being defined through nested convolution procedures.
Derived inferences are being consistently defined across the planned domains.
Those distributions are easily recovered through simulation techniques.

5 Discussion

In this paper we develop an intuitive and appealing framework to make inference
on totals of finite population based on individual continuous measurements. A
key distinction of our framework with regards to traditional design-based alter-
natives, is that the characteristic of interest to be observed in each individual is
assumed to be random. This assumption allows us to make full and interpretable
posterior inferences on totals using convolution-type distributions. Predictive
distributions are easily recovered via simulation techniques.

Another distinctive contribution of this paper consists in the formulation of
a procedure to make inference on totals associated with unplanned domains,
as well. In our formulation, uncertainty is spanned by considering the random
composition associated with the unplanned domains. Thus, posterior inference
is jointly made for the disaggregated totals and the intrinsic random composition
attained to the unplanned domains, simultaneously. And such an inference is
consistent with the aggregated inference based on planned domains solely. To
the best of our knowledge, this is the first approach achieving this task.

A library in the R language [11] producing inferences on totals based for
different specification of SSMs has been developed.
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