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Abstract

Home Care (HC) providers are complex structures which include medi-
cal, paramedical and social services delivered to patients at their domicile.
High randomness affects the service delivery, mainly in terms of unplanned
changes in patients’ conditions, which make the amount of required visits
highly uncertain. In this paper, we propose a Bayesian model to represent
the HC patient’s demand evolution over time and to predict the demand in
future periods. Results from the application to a relevant real case validate
the approach, since low prediction errors are found.

Keywords: Home Care; Bayesian Modeling and Estimation; MCMC
algorithm; Random effect.

1 Introduction

Home Care (HC) refers to any type of care provided to a patient at his/her own
home. The main benefit of HC is the reduction of the hospitalization rate, which
significantly increases the quality of life for the assisted patients and determines
a relevant cost saving for the entire health care system (see [1]). Appropriate
resource planning is required in HC for avoiding process inefficiencies and over-
loaded operators; in addition, many random events affect the service delivery
and mine the feasibility of plans (see, for instance, [2, 3, 4]). Among them,
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the most frequent and critical event is a variation in patient’s condition, which
makes the demand for visits different from the planned one.

In the literature, several studies deal with stochastic models for representing
patient conditions in the health care system and, among them, there are also
Bayesian approaches. Moreover, Bayesian models have been used to predict
patient traffic from their home to hospital, in order to facilitate reconfigurations
of the emergency hospital services [5, 6].

With regard to HC, a patient stochastic model is proposed in [7]: patient
evolution is described by means of a Markov chain, in which transition prob-
abilities are derived with a frequentistic approach, and the demand for visit is
obtained with a frequentistic cost function assigned to each state of the chain.
To the best of our knowledge, Bayesian approaches have not been considered in
the HC context so far. Therefore, the aim of this work is to propose a Bayesian
model that represents and predicts the demand evolution of HC patients.

2 Bayesian Model

We consider m patients in charge of a HC provider over a period divided into
discrete time slots. Each patient i enters the service at time slot TL(i) and exits
at time TU (i). Data observed for each patient i at time slot t ∈ [TL(i), . . . , TU (i)]
are:

• Ni,t: number of visits required to nurses (counts data) by patient i at time
slot t.

• CPi,t: Care Profile of patient i at time slot t. CP a categorical covariate
assuming Ncp integer values s (with s = 1, . . . , Ncp), evolving in time,
assigned by the provider based on the specific requirements and the costs
associated with the provided services. Usually, a CP is assigned to each
patient at the beginning of the care pathway and monthly confirmed or
changed. However, CP can be modified in advance in case of a sudden
variation in patient conditions.

Moreover, patient i is characterized by sexi (gender - categorical variable) and
agei (age at t = TL(i) – continuous positive variable).

We model each Ni,t as a discrete Poisson distribution with expected value
λi,t. The evolution of the latent variable λi,t over t is determined according to
a Markov chain. Let Ni =

(
Ni,TL(i), Ni,TL(i)+1, Ni,TL(i)+2, . . . , Ni,TU (i)

)
for each

i, and assume that N1, . . . ,Nm are conditionally independent. We propose a
generalized linear model as follows:

Ni,t|λi,t ∼ Pois (λi,t) , TL(i) ≤ t ≤ TU (i)

log (λi,t) ∼ N
(
α[CPi,t] log (λi,t−1) + β [CPi,t] , σ

2
)
, TL(i) < t ≤ TU (i)

log
(
λi,TL(i)

)
∼ N

(
γ1agei + γ2sexi + γ3

[
CPi,TL(i)

]
, σ2

0

)
.

2



In this formulation, the latent variable λi,t represents the health status of patient
i in time slot t, which is responsible for his/her demand for visits (the bigger
the parameter λi,t is, the worse the patient’s conditions are), while CPi,t is a
fixed covariate here (in this paper), and parameters αs = α[CPi,t = s], βs =
β[CPi,t = s] and γ3,s = γ3[CPi,t = s] describe the random-effects as a function
of the assumed CPi,t. The model we proposed here is a generalization of the
model in [8]. Parameters θ = (α,β, γ1, γ2,γ3, σ

2, σ2
0) are a priori (conditionally)

independent and their marginal prior densities are listed below:

αs
iid∼ N (0, σ2

α), s = 1, . . . , Ncp

βs
iid∼ N (0, σ2

β), s = 1, . . . , Ncp,

γ3s
iid∼ ∼N (0, σ2

γ3), s = 1, . . . , Ncp,

(γ1, γ2) ∼ N2(0, 1000), σ
2 ∼ U(0, 5),

and σ2
0 has a fixed value equal to three. Moreover, σα, σβ and σγ3 independent,

where
σα ∼ U(0, 5), σβ ∼ U(0, 2) and σγ3 ∼ U(0, 15).

The Bayesian formulation seems very appropriate, since, under this ap-
proach, prediction of Ni,t+1 at the next time slot is naturally accommodated
by means of predictive distribution. This is very important for HC decision
makers, who are interested in assigning nurses to patient over a future planning
horizon to improve service efficiency. The predictive distribution is:

L (Ni,t+1 = k|covariate,N1, . . . ,Nm) =

=

∫
L (Ni,t+1 = k|λi,t+1)L (dλi,t+1|λi,t)π (dλi,t|N1, . . . ,Nm) (1)

where Ni,t+1 is the number of nurse visits at time slot t+ 1.
From a predictive point of view, the accuracy of the prediction will be eval-

uated in terms of the Mean Absolute Error (MAE), that is:

MAEt+1 =

∑m
i=1 |ni,t+1 − N̂i,t+1|

mt
,

where mt is the number of patients in charge at week t, ni,t+1 is the observed
number of nurse visits at time slot t+1, and N̂i,t+1 is the defined as the mode of
the predictive distribution in (1). In this way, N̂i,t+1 is assumed as the Bayesian
prediction to be compared with the real observation.

3 Application to real data and results

We apply the model to one of the largest Italian home care providers; a descrip-
tion of the data set and its frequentist analysis are reported in [7]. Here, the
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week is considered as the time slot; 252 weeks (from 2004 to 2008) are included
in the study. The provider consists of three divisions and we refer to patients of
the largest one. Moreover, we considered only patients who entered and left the
service once within our time window. In this way, our dataset consists of 2401
patients.

Patients are grouped in two categories (palliative and non palliative patients),
and each category includes a certain number of CPs. Fifteen CPs are present
in the provider [7]. However, after joining together very similar CPs, we reduce
the number to 9 (see Table 1).

Table 1: Classification of CPs.

Type of care CPs of the provider Our group
Extemporary Care with a very low
frequency of visits

1 1
15 9

Integrated Home Care characterized
by a medium–high care intensity (CP
are listed in increasing order of
expected number of weekly visits)

2, 12 2
3, 13 3
4, 14 4
5 5
9 7
10 8

Palliative Care for terminal patients generally af-
fected by oncological diseases (CPs are listed in in-
creasing order of expected number of weekly visits)

6,7,8 6

In order to compute the Bayesian estimates, the model was implemented in
Jags ([9]), with chains consisting of 250000 iterations with a burn-in of 5000 and
a thinning of 50 iterations. The chains passed most of the standard convergence
tests.

Figures 1 reports the posterior credibility intervals of the main parameters
of our model, corresponding to CP equals to 1, . . . , 9, respectively.
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Figure 1: 95% credible intervals of αs, βs and γ3s, s = 1, 2, ..., 9.

In particular, the estimated values of β[CP ] parameters are clearly negative
when CP is 1 or 9, clearly positive for CP= 6, and closer to 0 for the other CP
values, leading to a subdivision coherent with the one described in Table 1.

From a predictive point of view, we computed the predicted nurse visits of
the active patients at week t + 1 (with, t = 99, 149, 175, 234). The estimated
MAE are given in Table 2.

5



Table 2: The MAE at week t+ 1.

t+ 1 100 150 176 235

MAE 0.52 0.63 0.65 0.55

The largest MAE is 0.65 at week 176, showing a very good fit of the model to
the analyzed data. To check if there is a systematic error in on our prediction,
we examined the error plot, where

Errort+1 = nit+1 − N̂it+1
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Figure 2: Error plots for prediction at week 100 (a), week 150 (b), week 176 (c)
and week 235 (d).

Figure 2 shows that our predictive estimates are mostly underestimating the
number of visits effectively given to the patients, although the absolute value of
the error is relatively small and most frequently equal to 1.

4 Conclusion

In this work, we first explored the application of a Bayesian models to the HC
context, in order to predict the demand for visits from patients in charge. The
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approach fits well the HC context, and the results from the application to a
relevant real case validate the approach, since low prediction errors are found.
Hence, the applicability of the proposed model in the practice is guaranteed.
Our future work will deal with joint Bayesian estimation of the number of visits
and the CPs in future periods.
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