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Abstract

Regular vine copulas can describe a wider array of dependency pat-
terns than the multivariate Gaussian copula or the multivariate Student’s
t copula. We present two contributions related to model selection of reg-
ular vine copulas. First is a reversible jump Markov chain Monte Carlo
algorithm to estimate the joint posterior distribution of the density factor-
ization, pair copula families and parameters of a regular vine copula. In a
second step, we reduce the algorithm to a tree-by-tree stepwise Bayesian
procedure that allows for faster computation. A simulation study shows
that our algorithm outperforms the model selection methods suggested in
current literature and succeeds in recovering the true model when other
methods fail. Furthermore, we present an application study that shows
how a vine copula-based approach can improve the pricing of exotic finan-
cial derivatives using real-life data.
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Chain Monte Carlo

1 Introduction

Multivariate data with rich patterns of dependence are found in many fields in
business and science. The tool of choice to model these patterns of dependence
are multivariate distributions with uniform margins; these are called copulas [11].
The Gaussian copula, possibly the most widely known copula, even made it into
mainstream media as “The Formula That Killed Wall Street” [10]. The signature
feature of copulas is that they allow dependence characteristics to be modeled
separately from the marginal distributions. This provides the added benefit
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that copulas can be introduced to existing models that do not yet incorporate
measures of dependence, but feature established models for the margins.

While many classes of bivariate copulas, also known as pair copulas, are well
known [6], there is only a very limited number of multivariate copulas available
with a closed-form analytical expression. Additionally, these cover only limited
patterns of dependence. Regular vine copulas provide a solution to this problem
by using nested conditioning with arbitrary pair copulas to describe multivariate
dependencies.

More specifically, regular vine copulas are set up in two steps: first is the con-
struction of an n-dimensional copula density from (conditional) bivariate copula
densities. These are organized in a sequence of linked trees V = (T1, . . . , Tn−1)
called the regular vine. Each of the n − j edges of tree Tj , 1 ≤ j ≤ (n − 1)
corresponds to a bivariate copula density that is conditional on j − 1 variables.
Secondly, a copula family is selected for each of these (conditional) bivariate
building blocks from a set of bivariate (parametric) candidate families B. We
denote the mapping of the pair copulas to the regular vine by BV(θV), where we
write θV for the parameters of the pair copulas.

We discuss two Bayesian model selection procedures of regular vine copulas
[4, 5] that are based on a reversible jump Markov chain Monte Carlo algorithm
[3]. Previous work on Bayesian as well as frequentist model selection of regular
vine copulas includes [7, 8, 13, 12, 1]. We add to that list a fully Bayesian model
selection algorithm that estimates the joint posterior distribution of the vine
density factorization V and the pair copulas BV(θV). Furthermore, we propose an
accelerated algorithm that proceeds tree-by-tree in a stepwise Bayesian fashion
for faster computation.

Our reversible jump MCMC sampler performs a within-model move and a
between-models move at each iteration. The within-model move updates the
parameters θV of the current regular vine copula. The between-models move
attempts to change the model to a different regular vine copula that is different
in the regular vine V and/or the pair copula families BV . We use random walk
proposals for the trees T1, . . . , Tn−1 ∈ V of the regular vine and for the parame-
ters θV . The proposal weights for the candidate pair copula families B ∈ B are
proportional to the likelihood of each candidate family, when its parameter is
set to its estimated value.

Given that the number of candidate vine tree structures N = n!
2 × 2(n−2

2 ) [9]
grows super-exponentially in the dimension n, model selection is a non-trivial
problem. The Metropolis-Hastings proposal mechanisms of our sampling algo-
rithms are designed to achieve rapid convergence of the sampling chain (Figure
1). To enforce model sparsity, we propose to use a shrinkage prior of the form
π(V,BV(θV)) ∝ exp(−λd), where d denotes the dimension of the parameter vec-
tor θV and λ is a parameter that sets the strength of the shrinkage. Depending
on the strength of the shrinkage prior, our algorithm recovers 98% to 100% of
the log likelihood of the “true” models used in our simulation studies. This
represents a major improvement over existing model selection methods whose
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Figure 1: Log likelihood trace plots of a simulation study with known 5-
dimensional and 6-dimensional regular vine copulas.

recovery rates hover in the 75% to 85% range.
In a final analysis, we estimate the expected payout of an exotic financial

derivative on a basket of securities. First, we strip the return time series from
their time-dependencies using GARCH(1,1) models [2]. Then we estimate a
regular vine copula to the approximately independent Uniform(0,1) data and
calculate Monte Carlo estimates of the payouts by drawing from the estimated
copula’s distribution. Current best practice to model dependencies in financial
data is to use the Student’s t copula. In recognition of this, we benchmark
against it to establish the vine copula’s outperformance in a real-life scenario.
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