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Abstract

We present a family of autoregressive models with nonparametric sta-
tionary and transition densities, which achieve substantial modelling flex-
ibility while retaining desirable statistical properties for inference. Pos-
terior simulation involves an intractable normalizing constant; we there-
fore present a latent extension of the model which enables exact inference
through a trans-dimensional MCMC method. We argue the capacity of
this family of models to capture time homogeneous transition mechanisms,
making them a powerful tool for predictive inference even when the pro-
cess generating the data does not have a stationary density. Numerical
illustrations are presented.

Keywords: Stationary time series; Mixture of Dirichlet process model;
Latent model.

1 Introduction

The mixture of Dirichlet process (MDP) model, introduced by Lo [5], is a very
popular model, which has benefitted from the advances in simulation techniques,
so that the model is now able to cover more complex data structures, such as
regression models and time series models [3].

In the context of time series, there is a need for flexible models which can
accommodate complex dynamics, observed in real life data. While stationar-
ity is a desirable property, which facilitates estimation of relevant quantities, it
is difficult to construct stationary models for which both the transition mech-
anism and the invariant density are sufficiently flexible. Many attempts have
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been made, often resulting in a compromise between flexibility and statistical
properties (see e.g. [2, 8, 9, 7, 6]).

We propose a model with nonparametric transition and stationary densi-
ties, which enjoys the advantages associated with stationarity, while retaining
the necessary flexibility for both the transition and stationary densities. We
demonstrate how posterior inference via MCMC can be carried out, focusing on
the estimation of the transition density, both for stationary and non–stationary
data–generating processes. For ease of exposition, we only consider first order
time series data and models, but the construction we propose can be adapted
for higher order Markov dependence structures.

2 The Model

We construct a nonparametric version of the usual autoregressive model, by
defining a nonparametric, i.e. infinite, mixture of parametric bivariate densities
Kθ(y, x), for with both marginals Kθ(y) and Kθ(x) are the same. We then
define the transition density as the conditional density for y given x, therefore
preserving the stationarity.

The transition mechanism can be expressed as a nonparametric mixture of
transition densities with dependent weights,

fP (y|x) =

∞∑

j=1

wj(x)Kθj (y|x),

where

wj(x) =
wj Kθj (x)∑

∞

j′=1
wj′ Kθj′

(x)
.

Clearly, the expression in the denominator, namely

fP (x) =

∞∑

j=1

wj Kθj (x),

constitutes the invariant density for such transition.
Therefore, both the transition and the stationary densities for the model are

defined as nonparametric mixtures.
To our knowledge, the only other fully nonparametric Bayesian model for

stationary Markov processes developed so far is due to Mart́ınez-Ovando and
Walker [6]. No applications to real data are currently available in the literature,
probably due to the complex nature of their model construction.

The model we propose has a simple structure. However, it has been, until
now, considered intractable due to the infinite mixture appearing in the denomi-
nator of the dependent weight expression. We therefore propose a latent variable
extension which enables posterior inference for the model via MCMC, involv-
ing slice sampling [4] and a trans-dimensional MCMC method [1]. Future work
should include applications to real data.
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2.1 Illustrations

We present some examples, all of them involving simulated data: form the mix-
ture model itself, a stationary diffusion process, standard Brownian motion and
a non-stationary diffusion. They illustrate how our model can be used for tran-
sition and invariant density estimation simultaneously, when the stationary den-
sity exists; yet remains suitable for transition density estimation, even when the
data is not generated by a stationary process.

(a) Predictive density (b) Stationary density

(c) Predictive density
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(d) Data histogram

Figure 1: Predictive and marginal densities for the mixture model with three
mixture components; the true densities (in blue) are accurately captured by pos-
terior inference (heat map). Bottom: Predictive density and histogram for 1000
data points from a Standard Brownian Motion Path; the transition mechanism
is recovered by the data, while the marginal provided by the model captures the
variability of the data histogram, enabling transition density estimation even in
the absence of a true stationary density.
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