STATISTICA

VERIFICA D'IPOTESI - 2

Verifica d'ipotesi: p

 (X_1,\ldots,X_n) campione aleatorio $bern(p), \quad np_0 \geq 5 \otimes n(1-p_0) \geq 5$

$$H_0$$

 H_0 H_1

si rifiuta H_0 se:

$$p = p_0$$
 $p \neq p_0$

$$p \neq p_0$$

$$\left| \frac{\hat{p}_n - p_0}{\sqrt{p_0(1 - p_0)/n}} \right| > z_{\alpha/2}$$

$$p = p_0$$
 $p > p_0$

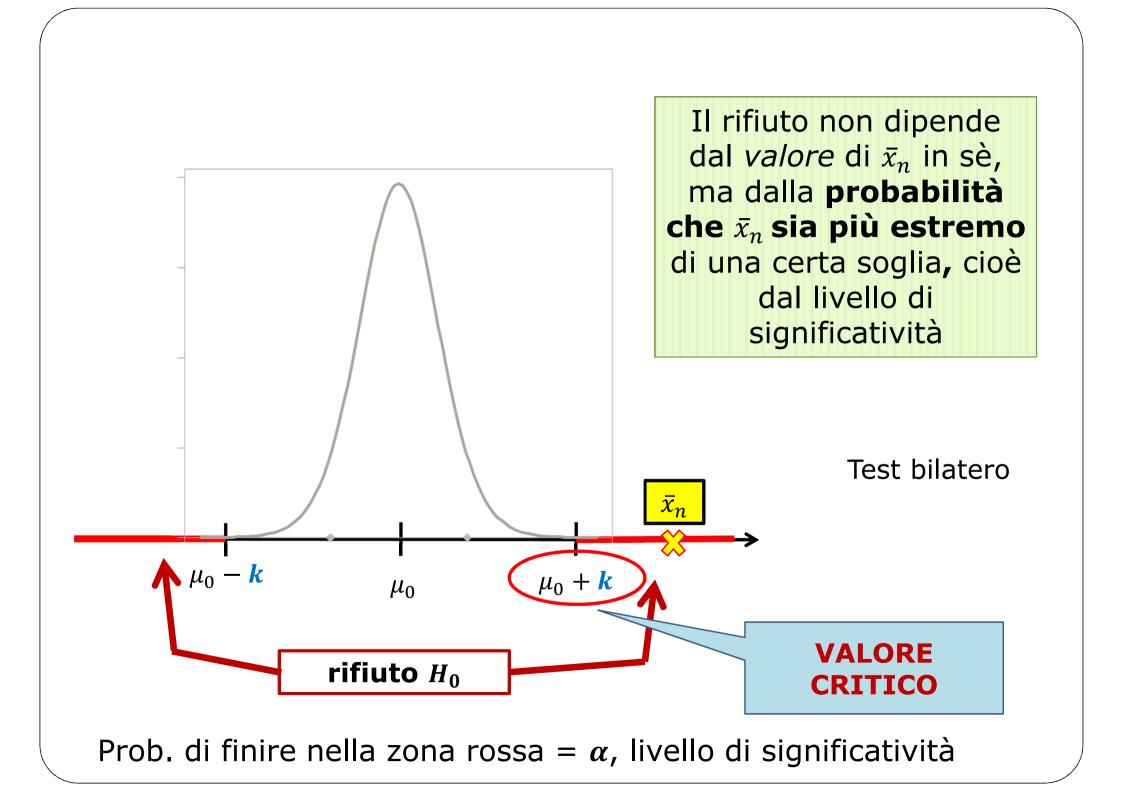
$$p > p_0$$

$$\frac{\hat{p}_n - p_0}{\sqrt{p_0(1 - p_0)/n}} > z_\alpha$$

$$p = p_0$$
 $p < p_0$

$$p < p_0$$

$$\frac{\hat{p}_n - p_0}{\sqrt{p_0(1 - p_0)/n}} < -z_\alpha$$



Vogliamo verificare che una moneta sia effettivamente equilibrata. La lanciamo 500 volte ottenendo un numero di T pari a 274. Sottoporre a verifica l'ipotesi nulla che la moneta sia equilibrata, al livello dell'1%.

Vogliamo verificare che una moneta sia effettivamente equilibrata. La lanciamo 500 volte ottenendo un numero di T pari a 274. Sottoporre a verifica l'ipotesi nulla che la moneta sia equilibrata, al livello dell'1%.

$$(X_1, ..., X_{500})$$
, i.i.d $b(p)$ $H_0: p = p_0 = 0.5$ $H_1: p \neq 0.5$

$$\left| \frac{\hat{p}_n - p_0}{\sqrt{p_0 (1 - p_0)/n}} \right| = \left| \frac{\frac{274}{500} - 0.5}{\sqrt{0.5 \times 0.5/500}} \right| = \left| \frac{0.548 - 0.5}{0.02236068} \right| = \frac{0.048}{0.02236068} = 2.10$$

Vogliamo verificare che una moneta sia effettivamente equilibrata. La lanciamo 500 volte ottenendo un numero di T pari a 274. Sottoporre a verifica l'ipotesi nulla che la moneta sia equilibrata, al livello dell'1%.

$$(X_1, ..., X_{500})$$
, i.i.d $b(p)$ $H_0: p = p_0 = 0.5$ $H_1: p \neq 0.5$

$$\left| \frac{\hat{p}_n - p_0}{\sqrt{p_0 (1 - p_0)/n}} \right| = \left| \frac{\frac{274}{500} - 0.5}{\sqrt{0.5 \times 0.5/500}} \right| = \left| \frac{0.548 - 0.5}{0.02236068} \right| = \frac{0.048}{0.02236068} = 2.10$$

$$z_{0.01/2} = 2.5758$$

Vogliamo verificare che una moneta sia effettivamente equilibrata. La lanciamo 500 volte ottenendo un numero di T pari a 274. Sottoporre a verifica l'ipotesi nulla che la moneta sia equilibrata, al livello dell'1%.

$$(X_1, ..., X_{500})$$
, i.i.d $b(p)$ $H_0: p = p_0 = 0.5$ $H_1: p \neq 0.5$

$$\left| \frac{\hat{p}_n - p_0}{\sqrt{p_0 (1 - p_0)/n}} \right| = \left| \frac{\frac{274}{500} - 0.5}{\sqrt{0.5 \times 0.5/500}} \right| = \left| \frac{0.548 - 0.5}{0.02236068} \right| = \frac{0.048}{0.02236068} = 2.10$$

$$z_{0.01/2} = 2.5758$$

 $2.10 < 2.5758.96 \Rightarrow$ non rifiuto al livello dell'1% l'ipotesi nulla

Vogliamo verificare che una moneta sia effettivamente equilibrata. La lanciamo 500 volte ottenendo un numero di T pari a 274. Sottoporre a verifica l'ipotesi nulla che la moneta sia equilibrata, al livello dell'1%.

$$(X_1, ..., X_{500})$$
, i.i.d $b(p)$ $H_0: p = p_0 = 0.5$ $H_1: p \neq 0.5$

$$\left| \frac{\hat{p}_n - p_0}{\sqrt{p_0 (1 - p_0)/n}} \right| = \left| \frac{\frac{274}{500} - 0.5}{\sqrt{0.5 \times 0.5/500}} \right| = \left| \frac{0.548 - 0.5}{0.02236068} \right| = \frac{0.048}{0.02236068} = 2.10$$

$$z_{0.01/2} = 2.5758$$

 $2.10 < 2.5758.96 \Rightarrow$ **non rifiuto** al livello dell'1% l'ipotesi nulla

E al livello del 5% si potrebbe rifiutare?

La spesa media per alimentari e bevande non alcoliche in un campione di 1200 famiglie, nel 2016, è risultata di 445.10€ con una deviazione standard di 73.75 €.

a) Costruire un intervallo di confidenza del 95% per la spesa media mensile familiare per alimentari e bevande alcoliche nella popolazione di riferimento.

La spesa media per alimentari e bevande non alcoliche in un campione di 1200 famiglie, nel 2016, è risultata di 445.10€ con una deviazione standard di 73.75 €.

a) Costruire un intervallo di confidenza del 95% per la spesa media mensile familiare per alimentari e bevande alcoliche nella popolazione di riferimento.

$$X_1, X_2, \dots, X_n$$
 i.i.d
$$X_i \sim N(\mu, \sigma^2)$$
 o TLC

$$X_1, \dots, X_n$$
 i.i.d
$$\left(\overline{X}_n - t(n-1)_{\alpha/2} \times \sqrt{\frac{{S_n}^2}{n}}, \overline{X}_n + t(n-1)_{\alpha/2} \times \sqrt{\frac{{S_n}^2}{n}}\right)$$

La spesa media per alimentari e bevande non alcoliche in un campione di 1200 famiglie, nel 2016, è risultata di 445.10€ con una deviazione standard di 73.75 €.

a) Costruire un intervallo di confidenza del 95% per la spesa media mensile familiare per alimentari e bevande alcoliche nella popolazione di riferimento.

$$X_1, X_2, \dots, X_n$$
 i.i.d
$$X_i \sim N(\mu, \sigma^2)$$
 o TLC

$$(\bar{X}_n, \dots, \bar{X}_n \text{ i.i.d})$$

$$(\bar{X}_n - t(n-1)_{\alpha/2} \times \sqrt{\frac{{S_n}^2}{n}}, \bar{X}_n + t(n-1)_{\alpha/2} \times \sqrt{\frac{{S_n}^2}{n}})$$

$$\left(\bar{x}_{1200} - z_{0.05/2} \times \frac{73.75}{\sqrt{1200}}, \bar{x}_{1200} + z_{0.05/2} \times \frac{73.75}{\sqrt{1200}}\right) = \left(445.10 - 1.96 \times \frac{73.75}{\sqrt{1200}}, 445.10 + 1.96 \times \frac{73.75}{\sqrt{1200}}\right) = (440.93, 449.27)$$

La spesa media per alimentari e bevande non alcoliche in un campione di 1200 famiglie, nel 2016, è risultata di 445.10€ con una deviazione standard di 73.75 €.

b) Secondo gli ultimi dati ISTAT, del 2014, la spesa media mensile di una famiglia italiana per alimentari e bevande non alcoliche è stata di 436.06€ (*). Il campione contiene abbastanza evidenza per poter affermare, ad un livello di significatività del 5%, che la spesa familiare media mensile delle famiglie italiane per questo settore è aumentata?

(*) ISTAT- La spesa per i consumi delle famiglie. Comunicato 8 luglio 2015.

La spesa media per alimentari e bevande non alcoliche in un campione di 1200 famiglie, nel 2016, è risultata di 445.10€ con una deviazione standard di 73.75 €.

b) Secondo gli ultimi dati ISTAT, del 2014, la spesa media mensile di una famiglia italiana per alimentari e bevande non alcoliche è stata di 436.06€. Il campione contiene abbastanza evidenza per poter affermare, ad un livello di significatività del 5%, che la spesa familiare media mensile delle famiglie italiane per questo settore è aumentata?

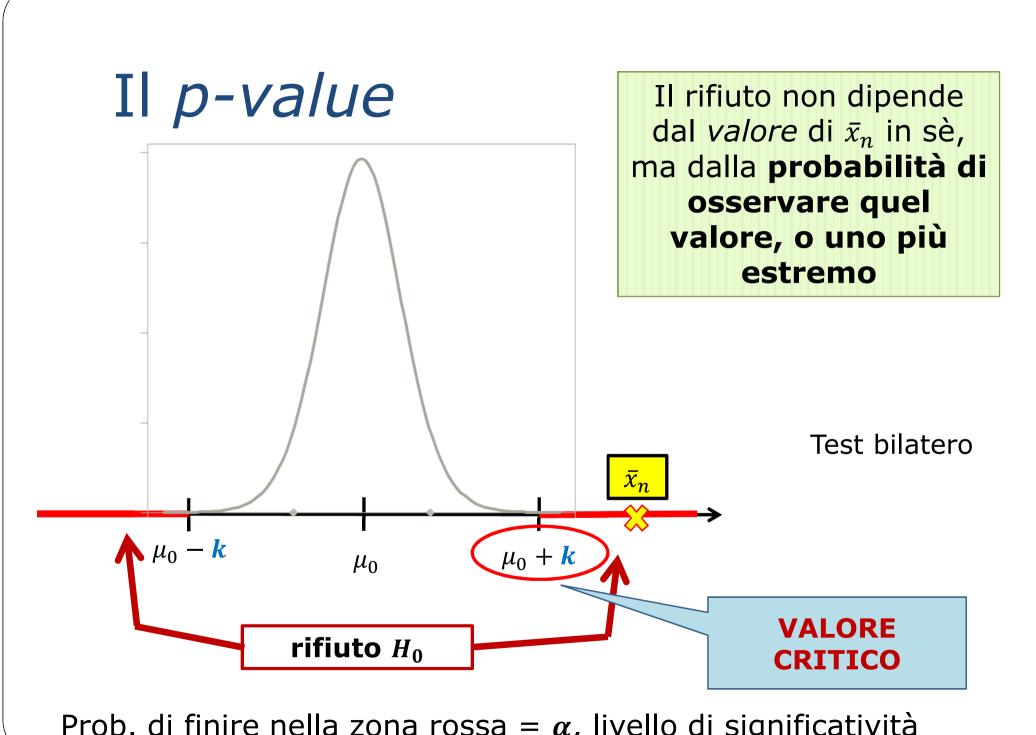
$$X_1, X_2, \dots, X_n$$
 i.i.d $H_0: \mu = \mu_0 = 436.06$ $H_1: \mu > 436.06$ $X_i \sim N(\mu, \sigma^2)$ o TLC
$$\frac{\bar{x} - \mu_0}{s/\sqrt{n}} > t(n-1)_{\alpha}$$

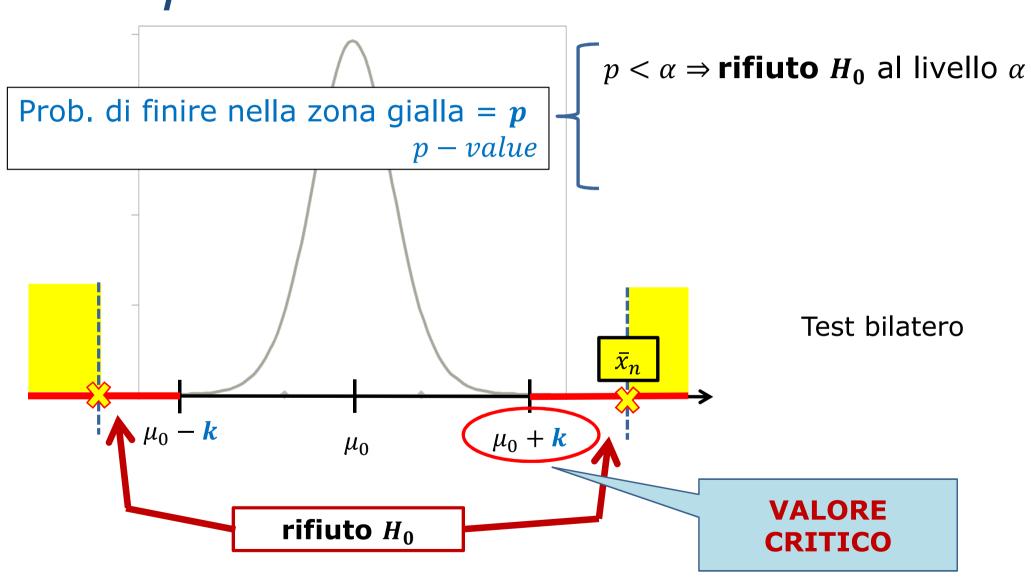
La spesa media per alimentari e bevande non alcoliche in un campione di 1200 famiglie, nel 2016, è risultata di 445.10€ con una deviazione standard di 73.75 €.

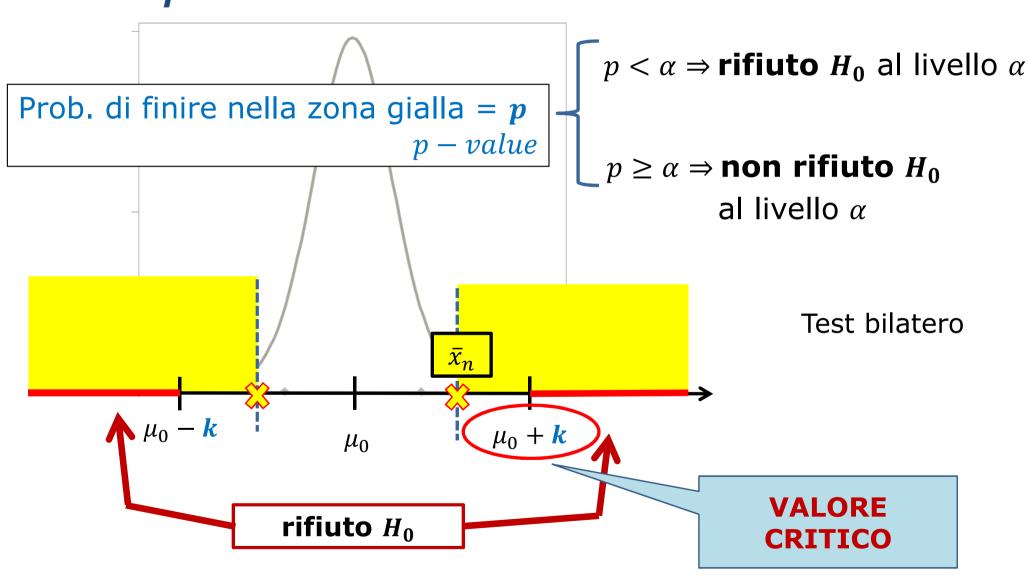
b) Secondo gli ultimi dati ISTAT, del 2014, la spesa media mensile di una famiglia italiana per alimentari e bevande non alcoliche è stata di 436.06€. Il campione contiene abbastanza evidenza per poter affermare, ad un livello di significatività del 5%, che la spesa familiare media mensile delle famiglie italiane per questo settore è aumentata?

$$X_1, X_2, \dots, X_n$$
 i.i.d $H_0: \mu = \mu_0 = 436.06$ $H_1: \mu > 436.06$ $X_i \sim N(\mu, \sigma^2)$ o TLC
$$\frac{\bar{x} - \mu_0}{s/\sqrt{n}} > t(n-1)_{\alpha} \qquad (n = 1200)$$
 $= z_{0.05} = 1.645$

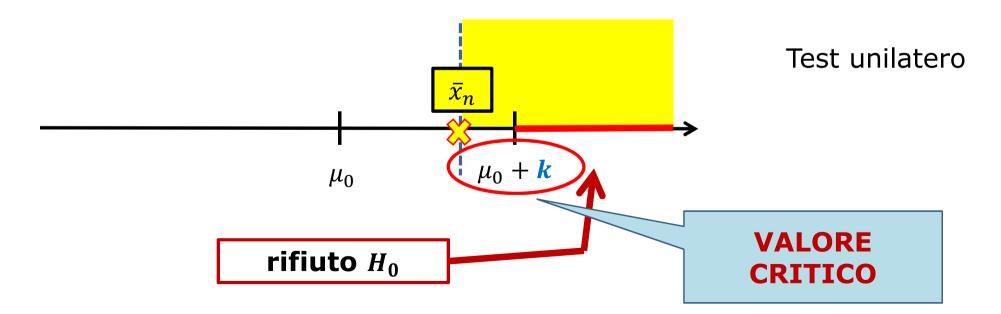
SI', al livello del 5%







Prob. di finire nella zona gialla = p p-value $p\geq \alpha\Rightarrow \mathbf{non\ rifiuto\ } H_0$ al livello α al livello α



Prob. di finire nella zona gialla = p $p < \alpha \Rightarrow \mathbf{rifiuto} \ H_0$ al livello α $p \in (0,1)$ $p \in (0,1)$ $p \in (0,1)$

"... the sex of patients and site of melanoma also were statistically significant (p = 0.00001 and 0.002 respectively), whereas age (p = 0.98) was not statistically significant."

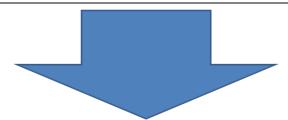
Prob. di finire nella zona gialla = p $p < \alpha \Rightarrow \mathbf{rifiuto} \ H_0$ al livello α $p \in (0,1)$ $p \in (0,1)$ $p \in (0,1)$

"... the sex of patients and site of melanoma also were statistically significant (p = 0.00001 and 0.002 respectively), whereas age 8) was not statistically significant."

è stato fatto un test, $p < \alpha = 0.05 \Rightarrow \text{ si rifiuta l'ipotesi nulla (che genere del paziente e sito del melanoma non siano fattori rilevanti) al livello <math>\alpha = 0.05$

Prob. di finire nella zona gialla = p $p < \alpha \Rightarrow \mathbf{rifiuto} \ H_0$ al livello α $p \in (0,1)$ $p \geq \alpha \Rightarrow \mathbf{non} \ \mathbf{rifiuto} \ H_0$ al livello α al livello α

"... the sex of patients and site of melanoma also were statistically significant (p = 0.00001 and 0.002 respectively), whereas age (p = 0.98) was not statistically significant."



è stato fatto un test, $p>\alpha=0.05\Rightarrow$ non si può rifiutare l'ipotesi nulla (che l'età del paziente non sia un fattore rilevante) al livello $\alpha=0.05$

Prob. di finire nella zona gialla = p $p < \alpha \Rightarrow \mathbf{rifiuto} \ H_0$ al livello α $p \in (0,1)$ $p \geq \alpha \Rightarrow \mathbf{non} \ \mathbf{rifiuto} \ H_0$ al livello α al livello α

"... the sex of patients and site of melanoma also were statistically significant (p = 0.00001 and 0.002 respectively), whereas age 8) was not statistically significant."

è stato fatto un test, $p < \alpha = 0.01 \Rightarrow$ si rifiuta l'ipotesi nulla (che genere del paziente e sito del melanoma non siano fattori rilevanti) al livello $\alpha = 0.01$

```
Prob. di finire nella zona gialla = p p < \alpha \Rightarrow \mathbf{rifiuto} \ H_0 al livello \alpha p \in (0,1) p \in (0,1) p = (0,1)
```

"... the sex of patients and site of melanoma also were statistically significant (p = 0.00001 and 0.002 respectively), whereas age 8) was not statistically significant."

è stato fatto un test, $p < \alpha = 0.001 \Rightarrow ???????$

Prob. di finire nella zona gialla = p $p < \alpha \Rightarrow \mathbf{rifiuto} \ H_0$ al livello α $p \in (0,1)$ $p \in (0,1)$ p = (0,1)

"... the sex of patients and site of melanoma also were statistically significant (p = 0.00001 and 0.002 respectively), whereas age 8) was not statistically significant."

è stato fatto un test, $p < \alpha = 0.001 \Rightarrow ???????$

Si rifiuta l'ipotesi che il genere del paziente sia irrilevante al livello $\alpha = 0.001$

NON si rifiuta l'ipotesi che il sito del melanoma sia irrilevante al livello $\alpha = 0.001$ (0.002 \geq 0.001)

Prob. di finire nella zona gialla =
$$p$$
 $p \in (0,1)$
$$p \in (0,1)$$

$$p = (0,1)$$
 al livello α

"... the sex of patients and site of melanoma also were statistically significant (p = 0.00001 and 0.002 respectively), whereas age 8) was not statistically significant."

è stato fatto un test, $p < \alpha =$

Più il p - value è piccolo e più è forte la significatività del test, cioè l'evidenza **contro** H_0 .

Si rifiuta l'ipotesi che il genere dei paziente sia irrilevante al livello

 $\alpha = 0.001$

del melanoma sia irrilevante al livello $\alpha = 0.001$ (0.002 \geq 0.001)

"Swiss-wide the month May to October show significantly increasing trends of rainfall erosivity for the observed period (p<0.005). Only in February a significantly decreasing trend of rainfall erosivity is found (p<0.01)."

"Swiss-wide the month May to October show significantly increasing trends of rainfall erosivity for the observed period (p<0.05). Only in February a significantly decreasing trend of rainfall erosivity is found (p<0.01)."

 H_0 : assenza di trend crescente

 H_1 : presenza di trend crescente \leftarrow

Rifiutiamo H_0 al livello: $\alpha = 0.05$?

 $\alpha = 0.01$?

 $\alpha = 0.001$?

"Swiss-wide the month May to October show significantly increasing trends of rainfall erosivity for the observed period (p<0.005). Only in February a significantly decreasing trend of rainfall erosivity is found (p<0.01)."

 H_0 : assenza di trend decrescente

 H_1 : presenza di trend decrescente

Rifiutiamo H_0 al livello: $\alpha = 0.05$?

 $\alpha = 0.01$?

 $\alpha = 0.001$?

Facciamo un salto indietro...

Era il 10/11

Sottinteso c'è un test:

 H_0 : p = 0.04, H_1 : $p \neq 0.04$

Es. 14 p. 136

In un test clinico sul Viagra è emerso che il 4% delle unità nel gruppo del placebo ha sofferto di mal di testa.

b) Applicando lo stesso tasso al gruppo del Viagra, determinare la prob. che su 8 soggetti che utilizzino il Viagra tutti lamentino il mal di testa.

 $X \sim Bin(8, 0.04)$

$$P(X = 3) = {8 \choose 3} 0.04^3 (1 - 0.04)^5 = \frac{8 \times 7 \times 6}{3 \times 2} \times 0.000064 \times 0.815374 = 0.002922296 \approx 0.003$$

$$P(X=8) = {8 \choose 8} 0.04^8 (1 - 0.04)^0 = 1 \times (6.55 \times 10^{-12}) \times 1 \approx 0$$

Era il 10/11

Facciamo un me stiamo calcolando un p-value: $P(X \ge 3) = 0.0031$ C'è abbastanza evidenza per rifiutare H_0 ?

Es. 14 p. 150

In un test <u>clinico sul</u> Viagra è <u>emerso che il</u> 4% <u>delle unità</u> gruppo del placebo ha sofferto di mal di testa.

c) Se <u>tutte</u> le 8 <u>unità che prendono il</u> Viagra <u>hanno</u> mal di sembrerebbe che il tasso in questo gruppo sia diverso che quello del placebo...

 $X \sim Bin(8, 0.04)$

$$P(X = 3) = {8 \choose 3} 0.04^3 (1 - 0.04)^5 = \frac{8 \times 7 \times 6}{3 \times 2} \times 0.000064 \times 0.815374 = 0.002922296 \approx 0.003$$

$$P(X=8) = {8 \choose 8} 0.04^8 (1 - 0.04)^0 = 1 \times (6.55 \times 10^{-12}) \times 1 \approx 0$$

Se la prob. di avere il mal di testa col V fosse 0.04 (4%), sarebbe praticamente impossibile avere 8 su 8 col mal di testa! Ma se li osservo, allora è l'ipotesi p = 0.04 che non è supportata dai dati.

Definite il test sottinteso, indicate il *p-value* e concludete.

Esercizio 8

Era il 10/11

Es. 6 pg. 139

Per i guidatori tra i 20 ed i 24 anni di età c'è un tasso annuo del 34% di incidenti d'auto (National Safety Council). Un investigatore assicurativo trova che in un gruppo di 500 guidatori scelti a caso a NY tra i 20 e i 24 anni il 42% ha avuto un incidente lo scorso anno.

c) Il risultato di NY sembra inusuale rispetto ai valori NSC? Si potrebbero giustificare assicurazioni più care per i Newyorkesi?

Tra i 500 di NY, $500 \times 0.42 = 210$ hanno avuto un incidente

 $X \sim Bin(500, 0.34) \Rightarrow P(149 \le X \le 191) = 0.96$ (con software statistico)

e
$$P(X \ge 210) = 0.00012$$

Usiamo la "regola del *range*" per la distribuzione di X: $(170 - 2 \times 10.59, 170 + 2 \times 10.59) = (148.82, 191.18) \Rightarrow i 210$ incidenti osservati a NY l'anno scorso costituiscono un valore inusuale, e potrebbero giustificare il più alto valore dei premi assicurativi.

STATISTICA

VERIFICA D'IPOTESI - 3

Due campioni indipendenti

Confrontiamo la spesa media annua per riparazioni dell'auto tra uomini e donne

Confrontiamo la longevità tra una popolazione isolana e una continentale

Confrontiamo l'effetto di un farmaco tra il gruppo del trattamento e quello del placebo

Confrontiamo il diametro delle uova deposte dai cuculi di Darwin in nidi di scricciolo o in nidi di pettirosso

Confrontiamo l'insorgere di una certa malattia tra chi fa sport e chi fa vita sedentaria

Due campioni indipendenti

Confrontiamo la spesa media annua per riparazioni dell'auto tra uomini e donne

Confrontiamo la longevità tra una popolazione isolana e una continentale

Confrontiamo l'effetto di un farmaco tra il gruppo del trattamento e quello del placebo

Confrontiamo il diametro delle uova deposte dai cuculi di Darwin in nidi di scricciolo o in nidi di pettirosso

Confrontiamo l'insorgere di una certa malattia tra chi fa sport e chi fa vita sedentaria

due gruppi di dati da due campioni **indipendenti**

Esempio 1

	Infarto miocardico			\widehat{p}_i
Gruppo	Sì	No		
1-Placebo	189	10845	11034	0.0171
2-Aspirina	104	10933	11037	0.0094

$$H_0: p_1 = p_2$$
 , $H_1: p_1 > p_2$

Verifica d'ipotesi: p_1 e p_2

 $(X_1, ..., X_{n_1})$ campione aleatorio $bern(p_1)$ $(n_1p_1 \ge 5 \ ecc.)$ $(Y_1, ..., Y_{n_2})$ campione aleatorio $bern(p_2)$ $(n_2p_2 \ge 5 \ ecc.)$

$$H_0$$
 H_1

$$p_1 = p_2 \qquad p_1 \neq p_2$$

$$p_1 = p_2 \qquad p_1 > p_2$$

Rifiutiamo H_0 se:

$$\left| \frac{\widehat{p}_1 - \widehat{p}_2}{\sqrt{una \ varianza \ opportuna}} \right| > z_{\alpha/2}$$

$$\frac{\widehat{p}_1 - \widehat{p}_2}{\sqrt{una\ varianza\ opportuna}} > z_\alpha$$

...

Verifica d'ipotesi: p_1 e p_2

$$(X_1, ..., X_{n_1})$$
 campione aleatorio $bern(p_1)$ $(n_1p_1 \ge 5 \ ecc.)$ $(Y_1, ..., Y_{n_2})$ campione aleatorio $bern(p_2)$ $(n_2p_2 \ge 5 \ ecc.)$

$$\overline{p} = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2}$$
 stima della proporzione totale di "successi"

una varianza opportuna :
$$\overline{p}(1-\overline{p})\left(\frac{1}{n_1}+\frac{1}{n_2}\right)$$

Verifica d'ipotesi: p_1 e p_2

 $(X_1, ..., X_{n_1})$ campione aleatorio $bern(p_1)$ $(n_1p_1 \ge 5 ecc.)$

 $(Y_1, ..., Y_{n_2})$ campione aleatorio $bern(p_2)$ $(n_2p_2 \ge 5 ecc.)$

$$H_0$$
 H_1

$$p_1 = p_2 \qquad p_1 \neq p_2$$

$$p_1 = p_2 \qquad p_1 > p_2$$

.. ...

Rifiutiamo H_0 se:

$$\left| \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\overline{p}(1-\overline{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \right| > z_{\alpha/2}$$

$$\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\overline{p}(1-\overline{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} > z_{\alpha}$$

Esempio 1

	Infarto miocardico			\widehat{p}_i
Gruppo	Sì	No		
1-Placebo	189	10845	11034	0.0171
2-Aspirina	104	10933	11037	0.0094

$$H_0: p_1 = p_2$$
 , $H_1: p_1 > p_2$

$$\overline{p} = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2} = \frac{189 + 104}{11034 + 11037} = 0.0133$$

$$\overline{p}(1-\overline{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right) = 0.0133 \times 0.9867 \times \left(\frac{1}{11034} + \frac{1}{11037}\right) = 0.000002378$$

Esempio 1

	Infarto miocardico			\widehat{p}_i
Gruppo	Sì	No		
1-Placebo	189	10845	11034	0.0171
2-Aspirina	104	10933	11037	0.0094

$$H_0: p_1 = p_2$$
 , $H_1: p_1 > p_2$

$$\overline{p} = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2} = \frac{189 + 104}{11034 + 11037} = 0.0133$$

$$\overline{p}(1-\overline{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right) = 0.0133 \times 0.9867 \times \left(\frac{1}{11034} + \frac{1}{11037}\right) = 0.000002378$$

$$\frac{0.0171 - 0.0094}{\sqrt{0.0000002378}} = 4.99 > z_{0.01} = 2.3663 \Rightarrow c'è \text{ forte evidenza contro } H_0$$