Esercitazione del 13 marzo 2014

Esercizio dal tema d'esame del 31.01.2010

La distribuzione di frequenze del carattere X è indicata nella seguente tabella:

iaicata iici	
\mathbf{X}_{i}	f_i
10	5
15	2
16	5
17	11
18	9
19	4
20	13
55	1
	50

Calcolare:

- 1) La media aritmetica;
- 2) la media geometrica;
- 3) il coefficiente di variazione;
- 4) rappresentare la distribuzione mediante un box-plot;
- 5) l'indice di concentrazione R;
- 6) mantenendo invariato il totale $A = \sum_j x_j f_j$, fornire una distribuzione del carattere per cui l'indice R sia più elevato.

Esercizio dal tema d'esame del 25.06.2013

Si consideri la seguente distribuzione di frequenze:

Xi	f_i
-2	3
-1	2
0	5
1	3
2	2
	15

- a. Si calcolino la media e la mediana della distribuzione.
- b. Si discuta la simmetria della distribuzione.
- c. Si fornisca una distribuzione di frequenza, per i medesimi valori x_i , che abbia indice di simmetria di Pearson pari a zero e indice β (beta) di Fisher diverso da zero.

Nota: la distribuzione alternativa di cui al punto c. individuata a lezione ha indice β pari a 0.14, e non 0.07 come indicato in classe. Un'altra possibile distribuzione di frequenza che soddisfa il punto c. è la

\mathbf{X}_{i}	f_i
-2	0
-1	50
0	26
1	0
2	25
	101

Verificate che la media e la mediana coincidono, mentre l'indice β è diverso da zero.